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We study quantum mechanical systems of particles with Bose or Fermi statistics 
interacting via two-body potentials of positive type in thermal equilibrium. We 
rewrite partition functions, reduced density matrices (RDMs), and correlation 
functions in terms of Wiener and Gaussian functional integrals (sine-Gordon 
transformation). This permits us, e.g., to apply correlation inequalities. Our main 
results include an analysis of stability versus instability in the grand canonical 
ensemble and, for charge-conjugation-invariant systems, upper and lower bounds 
on RDMs, the existence of the thermodynamic limit of pressure, RDMs and 
correlation functions, an inequality comparing correlations with Fermi statistics 
to ones with Bose statistics, and inequalities which are important in the study of 
Bose-Einstein condensation and of superconductivity. 

KEY WORDS: Correlation inequalities; classical and quantum continuous 
systems; positive type potentials; stability; thermodynamic limit. 

1. N O T A T I O N S  A N D  S U M M A R Y  OF R E S U L T S  

1.1. An Out l ine  of  the  M a i n  Results 

In  this p a p e r  we c o n t i n u e  o u r  s tudy,  in i t i a ted  in  Ref.  10 (hereaf ter  referred 

to as I), o f  classical  a n d  q u a n t u m  m e c h a n i c a l  c o n t i n u o u s  sys tems in t he rm a l  
equ i l i b r i um.  The  sys tems cons ide red  here cons is t  o f  two (or  more )  species o f  
par t ic les  i n t e r ac t i n g  via  t w o - b o d y  po ten t i a l s  o f  pos i t ive  type,  a n d  in  m a n y  

resul ts  a n  exact  charge  c o n j u g a t i o n  i n v a r i a n c e  is requi red .  In  I we have  
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found new correlation inequalities of the Ginibre type tl 3) for classical systems 
and quantum mechanical systems without statistics (" Boltzmann statistics") 
which are charge conjugation invariant. We applied those correlation 
inequalities to establish the existence of the thermodynamic limit of (the 
pressure and) the correlation (RDM) and imaginary time Green's functions 
(ITGF). 

One basic ingredient in the proof of those results, in particular of the 
correlation inequalities, was the use of a combination of the Feynman-Kac 
formula with the sine-Gordon (or Siegert) transformation. These technical 
devices play a decisive role in the present paper as well. 

The results of paper I are here extended in the following four directions: 
(A) Analysis of stability and instability of quantum mechanical systems 

in the grand canonical ensemble. Let EA(fl, z) denote the grand canonical par- 
tition function in a bounded region A (of volume ]A[) at inverse temperature 
fl and activity z. By stability we mean the inequality 

'~A(fl, .7) ~ exp[O(lA[)] 

for suitable fl > 0 and z > 0. By instability we mean, roughly speaking, that 
for some fl, EA(fl, z) has a singularity in z at some finite, positive value Zo, 
and EA(fl, z) = + oe for z > Zo. See Section 2. 

(B) Proof of the existence of the thermodynamic limit of the pressure for 
stable two-component, charge-conjugation-invariant systems of arbitrary 
statistics. See Section 2. 

Remark. In (A) and (B) the particles may have arbitrary spin, and the 
results outlined in (A) do not require charge conjugation invariance. 

(C) Uniform (in A) upper and lower bounds on RDMs and ITGFs for 
charge conjugation invariant systems with Bose statistics and sufficiently 
small activity (Fermi statistics also can be treated with our methods, but the 
resulting bounds are not particularly useful). See Section 5. 

(D) Existence of the thermodynamic limit of RDMs and ITGFs of 
charge-conjugation-invariant systems with Bose statistics (below the break- 
down of stability). We also prove a comparison inequality between RDMs 
with Fermi (resp. Bose) statistics and study the effects of interactions with 
the electromagnetic field. See Section 5. 

In Section 3 we recall and extend the correlation inequalities of I. In 
Section 4 we give a simple derivation of Ginibre's formulas (see Ref. 12) for 
the RDMs and ITGFs by using Gaussian functional integrals, as in Ref. 7 
and paper I (sine-Gordon or Siegert transformation), in conjunction with 
Brownian motion. The sine-Gordon transformation permits a derivation of 
Ginibre's formulas for the RDMs from elementary, known facts concerning 
ideal gases of particles in an external (purely imaginary) potential. This gives 
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our elaborations on the sine-Gordon transformation a certain degree of  per- 
fection. We also show how to include interactions with the (classical or 
quantized) electromagnetic field in this formalism. 

1.2. S o m e  N o t a t i o n s  and De f in i t ions  

The physical systems we study consist of  two species of quantum mechan- 
ical particles of mass m~ and charge q~, i = 1, 2 (several of our results extend, 
however, to arbitrarily many species of particles of arbitrary masses and 
charges). These particles interact via two-body potentials. The potential 
between a particle of charge q at a point x E IW and one of  charge q' at a point 
x' ~ ~ is given by qq' V(x, x'). Generally v = 3. Henceforth it will be required 
(unless otherwise stated) that V be of  positive type, i.e., that it be the integral 
kernel of  a positive quadratic form on L2(~) .  Moreover, we shall usually 
assume that V(x, x') is continuous in x and x' and 

K ~ sup V(x, x) < oo (1.1) 

We are primarily interested in translation-invariant potentials, 

V ( x ,  x ' )  = V ( x  - x ' )  (1.2) 

Then V is of  positive type iff its Fourier transform 17 is nonnegative. 
Condition (1.1) can be relaxed significantly for classical systems (v'l~ and 

quantum mechanical systems with Bol tzmann--or  Fermi (resp. mixed Bose 
and Fermi) statistics; see Ref. t7. 

First, we consider systems confined to a bounded, open region A c ~ .  
The coordinates of  N particles of  species 1 are denoted (X)N = (Xl ..... XN), 
Xj ~ A, those of  M particles of species 2 are (X')M = (Xl', .... XM'), Xj' ~ A, and 

N M 

d(X)N = [I  dVxj, d(X')M = [I  d~xj ' (1.3) 
j = l  j = l  

The one-particle Hilbert space for a particle of  species i is L2(A, d~x) | 
CZS,+ 1 where S~ is the spin of the particle; the N-particle Hitbert space JIg(aN) 
is given by 

~i,a(N) _-- (L2(A, d~x) | CZS,+ 1) | (1.4) 

where eg is the statistics of  those particles; e~ = + 1 for Bose statistics, e~ = - 1 
for Fermi statistics. 

The total Hilbert space of  N particles of  species 1 and M of  species 2 is 

Z,~(AN,~0 = ~ , ~  | Zr ) (1.4') 

Let A~. ')^ be the Laplacian on LZ(A, d~x~ ')) with zero Dirichlet data at the 
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boundary 0A of A. The Hamiltonian of the (N, M)-particle system is given by 

N M 
H(AN'M) = - - Z  (1/2m~)A~ A -  ~ (1/2m2)Aj A+ U((X)N, (x')m) (1.5) 

i= i  j = l  
where 

U((x)u, (X')M) = ~ ql z V(x,, xj) + ~ q2 z V(xi', xj') 
1 <.i <j<~N 1 <~i <j<~M 

N M 

+ Z ~ qlqzV(xi, x/) 
i=1 j = l  

For potentials V of interest in nonrelativistic physics [in particular if V satis- 
fies (1.1)], Hk W'M) is known to be self-adjoint on a dense domain in 

LZ(A, d~x)~U+~ | C(2S1+ 1)N+(2S2+ 1)M 

thus on ~{A u'M), and exp[--flH~A u'M)] is trace class, for bounded, open A 
and /~ > 0. Let r = (x, ~) be the configuration-space point of a particle, 
where /~ labels one component of the spin, and (r)N = (rl ..... rN). Let 
@atJ((r)N(r')M; (rON(r')M) be the integral kernel of exp[--flH~A N'M)] without 
statistics. If Vis continuous and fl > 0, ~A p is well-defined, positive, and con- 
tinuous in its arguments. 

We define 

f A d ( r ) N - - ~ ' " f A  d ( x ) N - =  ~ N 
N ~1 ~lN 

The grand canonical partition function E^(fl, z) is then defined by 

EA(fl, Z1, Z'2) = ~ ZlNZzMTr~'M)(exp[--flH(AN'M)]) 
N , M = O  

oo N Z 2  M 

= Z ~ z~. JA d(r)ud(r')M 
N=O ~t=O . 3~t! N+, 

• ~ ~("')~(~)$Aa((r)u(r')M;~(r)NZ~z(r')M) (1.6) 
~1 ~ S N 
n 2 e S M 

where SN is the group of  permutations of N elements, [qi = ]eel = 1, and 
a(rc) is the signature of ~, rr(r)N = (r~l) ..... r~m). 

The term corresponding to N = M = 0 is - 1. (In the case of Boltzrnann 
statistics, the sum over permutations is absent. Since the Hamiltonians con- 
sidered here are spin-independent, we could take a partial trace over all spin 
degrees of freedom. Then higher dimensional representations of the permuta- 
tion group on x-space wave functions appear.) The pressure of these systems 
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is given by 

pA(] ~, Z1, Z2) = (1/Iml) log EA(fl, zl ,  z2) (1.7) 

and the RDMs by 

PA(fi, z; (r)N(r')M; (r-)N(7)M) 
N+N'  M+M'  

Z 1 Z 2 

= EA(]~' Z ) - I  N',M'=O N ' !  M ' !  

d(u)N, d(u')M, ~ ei~'~e~ ~ X 
dA N'+M' 7~1 ~SN+ N' 

~t2 E SM + M' 

• ~b^P((r)N(U)U,(r')M(U')M,; nl((r-)N(U)N,)n2((i')(U')M,)) (1.8) 

The definition of ITGFs  is more complicated; see Ref. 10, Appendix 1. 

Defini t ion 1.1. A system is called charge conjugation invariant iff 
m 1 = m 2 ~ m, S a = $2, r = r ~ E, z 1 = Z 2 ~--- Z, and ql ~ q = - q 2 .  

Our main mathematical tools for the analysis of  the systems introduced 
here, in particular of  E^(fl, z), PA(fl, Z), and p^(fl, z; -), appear in Sections 3 
and 4. 

1.3. S ta tement  of  the Ma in  Theorems 

In Section 2 we prove, using an idea of Griffiths, ~14) the following result. 

Theorem A. For  stable, charge-conjugation-invariant systems with 
arbitrary statistics and translation-invariant potential V, the thermodynamic 
limit 

p(fl, z) = lim PA(fl, Z) 
A f g~ 

exists and is independent of  the sequence A (only assumed to be increasing). 
The limit p(fl, z) has the usual convexity properties. 

In Section 5 we extend the results of  I by proving the following : 

Theorem B. For stable, charge-conjugation-invariant systems of 
bosons (e = 1) the thermodynamic limit of  the R D M s  

p(fl, z; (x)s(x')#; (Y)N(Y')M) = lim PA(fl, Z; (X)N(X')M ; (Y)N(Y')M) 
A Z W  

exists for a/! N, M = 0, 1, 2 ..... It  is monotone increasing in z and bounded 
above by 

rC~SNJ=I  •' M J = I  
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where 

f i ( x , y ) =  ~ ~ ) ~ - e x p l  s [ ]x~y]2.~ 
j=l 2jfl A 

and 2 = (2nm/fl) 1/2, for ~ = z exp(flK/2) < 1. 

Remarks.  1. We show in Section 2.2 that the restriction ~ < 1 in 
Theorem B cannot be relaxed by much because for large z, Bose-Einstein 
condensation destroys stability. 

2. The proof of Theorem B is based on a combined use of Brownian 
motion, the sine-Gordon transformation (Section 4), and correlation 
inequalities (Section 3). Whereas the first two techniques can be used to 
analyze very general systems of particles of arbitrary spin and statistics, it 
appears that the correlation inequalities only hold for charge-conjugation- 
invariant systems with Bose statistics. Theorem B can be extended to bosons 
with integral spin. This is a straightforward generalization of the techniques 
developed in Sections 3-5 which we do not elaborate on; but see Section 4. 

3. Theorems A and B can be generalized to the case where the particles 
carry electric charge through which they are coupled to the quantized 
radiation field by minimal substitution 

Aj A--~ AA,j : {IV __. ieAK(xj)]*[V j +_ ieA~(xj)]} A (1.9) 

Here A is the quantized vector potential, and x is an ultraviolet cutoff with 
the effect that the two-point function of A~(0) is finite. We shall discuss the 
generalization of Theorem B to such systems in some detail. Moreover, we 
shall show that the RDMs ofcharge-conjugation-invariant Bose systems with 
e r 0 are bounded above by the ones with e = 0 (Section 5). 

4. Following Appendix 1 of Ref. 10, one can extend the results of 
Theorem B to the ITGFs. That permits the r6construction of a unique KMS 
state and of the dynamics in the corresponding KMS representation, in the 
thermodynamic limit. (23) 

5. Existence theorems for the RDMs and ITGFs of quantum mechanical 
systems in the grand canonical ensemble have previously been obtained for 
various classes of short-range potentials in Ref. 12 and for nonrelativistic 
matter with Coulomb replaced by Yukawa potentials in Ref. 3. The methods 
used there only work in the dilute regime (small fl and z) and for short-range 
potentials. In comparison, our methods work for arbitrary values of fl and an 
optimal range of z and do not impose restrictions on the range of the poten- 
tials. Moreover, the quantized radiation field can be included in our treat- 
ment. However, our assumptions of Bose (or Boltzmann) statistics and strict 
charge conjugation invariance are physically awkward. 

6. Among our further results are (see Section 5) (a) an inequality saying 
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that for fixed parameters and given potential, the absolute values of  the 
RDMs with Fermi statistics are bounded above, in configuration space, by 
ones with Bose statistics; (b) lower bounds for the RDMs of  charge- 
conjugation-invariant Bose gases which diverge if z is large enough and 

I V(x)l <~ O(Ix[- 1 -~) as rxl ~ oo for some e > 0 

Our results suggest that such systems are likely to exhibit Bose-Einstein 
condensation, and that one ought to be able to even prove this rigorously; 
(c) various (diamagnetic and other) inequalities for the partition functions and 
the RDMs of  systems coupled to the electromagnetic field that might be of  
interest in the theory of  superconductivity. 

2. STABILITY A N D  INSTABIL ITY IN THE 
G R A N D  C A N O N I C A L  ENSEMBLE.  
T H E R M O D Y N A M I C  L IMIT  OF THE PRESSURE 

2.1. Stabi l i ty  in the Grand Canonical  Ensemble 

Consider the Hamiltonian H (~v'M) o n  the Hilbert space ~9(AN'M) defined 
in Section 1.2, Eqs. (1.5) and (1.4), respectively. The basic assumption is that 
q = - 1 (i.e., the first species of particles consists of fermions) and that the 
interaction potential Vis chosen such that, for a given choice of e2, the system 
is H-stable in the sense that for some finite constant B and arbitrary A 

H(M'N) > 1--T(M'N)z~" A -- B ( M  + N )  (2.1) 

as a quadratic form, for arbitrary M and N; here T(A M'm is the kinetic energy 
operator, i.e., 

M N 

T(A M'N)= - - Z  (1/2m0A~ A -  Z (1/2m2)A.) A (2.2) 
i = 1  j = l  

See (1.5). 

Def in i t ion .  A region A c R v is called regular iff diam A ~< ~lAI 1jr for 
some finite c~. 

T h e o r e m  2.1. Let e I = - 1 ,  Q = _+1, and q2 r 0. Assume that the 
potential V is of  the form 

V(x,  y) = Vl(X , y)  -~ V2(x - y)  ( 2 . 3 )  

such that (2.1) holds for V = V 1, V 2 = 0, and V z is a function whose Fourier 
transform V2, is nonnegative and continuous with 

 2(0) > 0 
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Let m~, m 2 be positive and z~, z 2 finite. Then there exists a constant 
c = c(3, Zz, z2), finite for all/~ > 0, such that 

EA(3, zl ,  z2) < exp[c[A[] (E-stability) (2.4) 

for arbitrary, regular regions A. 
A possibly novel, simple proof of Theorem 2.1 is given in Appendix A. 

Remarks. 1. The result in Section 2.2 shows that it is important  to 
assume that one species of  particles consists of fermions. 

2. Theorem 2.1 has an obvious generalization to systems of arbitrarily 
many species of  particles including fermions. 

3. As an application, consider the three-dimensional, nonrelativistic 
matter system, with V, e.g., the Coulomb potential. We decompose Vinto two 
parts, 

with 

V--V~ + V~ 

VI(X ) = (1/4nlxl)e -ulxl, V2(x) = (1/4~zlx[)(1 - e ,!xL) 

for some # > 0. We assume that one species of  particles is fermions. Then all 
hypotheses of  Theorem 2.1 are valid. Thus, the grand canonical partition 
function of  the matter  system satisfies inequality (2.4), i.e., the system is 
"E-stable."  

We have recovered here a result of  Lieb and LebowitzJ iv) 

2.2. Instabi l i ty in the Grand Canonical Ensemble 

In this section we study a two-component,  pure-boson system with 
dynamics given by the Hamiltonians H ~  'M~, N, M = 0, 1, 2 ..... but in contrast 
to Section 2.1, we assume q = E2 = 1. The masses of the particles in the two 
species are mx, m2, their charges are ql, qz with q~ > 0, q2 < 0, and their 
activities are z 1 , z2, respectively. We set 

m=min{ml ,m2} ,  z = � 8 9  l -q2 /q~}  (2.5) 

Moreover, we define EA~ z) to be the partition function of an ideal, one- 
component  Bose gas of  particles with mass m. In Appendix B we prove the 
following: 

T h e o r e m  2.2. Consider the system described above, with E1 = E z = l 
and m and z as defined in (2.5). Then 

EA(fi, z l ,  22) ~> EA~ z) (2.6) 
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Remarks. 1. It is well known that, for arbitrary z > 1, there exists Ao(z) 
such that Ea~ z) is divergent for A - Ao(z). Thus, Theorem 2.2 says that 
for z 1 and z2 large enough depending on q~ and q2, the two-component Bose 
sys tems considered here are not E-stable. 

2. In Section 5 we show that for two-component, charge-conjugation- 
invariant Bose systems with pair potential decaying like ]xl-1-E, E > 0, the 
RDMs diverge for z large enough. 

2.3. The Thermodynamic  Limit of the Pressure of 
Charge-Conjugat ion- lnvar iant  Systems 

In this section we study general charge-conjugation-invariant systems of 
arbitrarily many species of particles with arbitrary spin and statistics. All that 
is important is (i) strict charge conjugation invariance, (ii) E-stability. 

Under the above hypotheses we prove the existence of the thermo- 
dynamic limit of the pressure (grand canonical ensemble), using an idea due 
to Griffiths3 ~4) In order to economize on notations, we restrict our attention 
to two-component, quantum mechanical systems, but our methods work in 
the general case as well. Moreover, they are applicable to charge-conjugation- 
invariant, classical systems and, after some modifications, to one-component 
systems with nonnegative potentials. They are, however, too simple-minded 
to permit to study the dependence of the thermodynamic limit on boundary 
conditions. 

The main result of this section is as follows: 

Theorem 2.3. Consider the pressure PA(fl, Z) = PA(fl, Z, Z) defined in 
(1.7) of a system with dynamics given by the Hamiltonians (1.5). Suppose that 
the system is E-stable in the sense of inequality (2.4), and charge conjugation 
invariant in the sense of Definition 1.1. Then 

p(fl, z) - lira PA(fl, Z) (2.7) 
A 1 " ~  v 

exists and has the usual convexity properties (provided A ~ ~ in the sense 
of Van Hove or Fisher~22)). 

Proof.  Let A,,  A2 be bounded, open subsets of ~ with A~ c~ A2 = e. 
Let E(#, z) - EA(fl, z, z) be the grand canonical partition function. By general 
arguments (22) it is enough to show that 

EA, u A2(/~, z) /> E^I(/~, z)E~2(/~, z) 

provided E-stability holds. 

(2.8) 
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We introduce the Hilbert space 

aC'a = ~:) ~ug'r (2.9) 
N , M = O  

where a~a{aN, V) has been defined in (1.4). We set/~ = - f l -  1 log z and define the 
Hamiltonian H A on aeg^ by 

H A = @ [H~N'M)+ # ( N +  M){]I,kN,u, (2.10) 
N , M = O  

with H (N'M) the Hamiltonian defined in (1.5). One convinces oneself by direct 
calculation that 

Ea(fl, z) = TrceA(e -an^) (2.1 1) 

Next, let T~ N'M) be the kinetic energy operator introduced in (2.2), and 

TA = @ T(A N'M) 
N , M = O  

Given two bounded, open subsets A1, A2, we define 

N I , M  j = 0 N2 ,M  2 = 0 

U - U((X)N,, (X')M,) -- ((Y)N,, (Y)M=)} (2.12) 

with the convention that the x and x' coordinates are in A1, whereas the y and 
y' coordinates are in A z. Clearly, WA,,A 2 is the interaction energy between 
the system confined to A 1 and the one confined to A2. 

Since 0-Dirichlet data are imposed on TA [see (1.5)], 

TA, u& < TA, + r& (2.13) 

(This follows from - A  A' ~ A= ~ _ AA, _ AA=, a well-known inequality.) By 
(2.13) and definitions (2.10) and (2.12), 

HA s uA~ ~< HA, + HA2 + WA,,A 2 (2.14) 

Therefore 

TrjeA[exp(--BHA,. A)] >~ Tr.A{exp[--fi(HA, + HA2 + W^I,A2)]} (2.15) 

Let PAl,& be the state given by 

Tr .A{exp[-  fi(HA~ + HA)]}-1 Tr~eA{--exp[- fl(HA, + HA)]} 

The Peierls-Bogoliubov inequality now gives 

TrzA{exp[-3(HA , + HA~ + WA,,A)]} 

>~ Tr~,e^{exp[-fl(HA1 + HA)]} exp[--flPA.A~(WA,,A)] (2.16) 
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Next, we note that if V~ and V z are two closed, orthogonal subspaces of  a 
Hilbert space, then 

so that 

n 

(v~ | v : )  | = | v ~  ~ | v2 *~("-*) 
k = O  

~ v m)o(  0 v t) 
If we set V i -- LZ(Ai, dVx) | C 2S+ 1 i = 1, 2, and recall (1.4') and (2.9) we 
obtain 

~'~AI u A2 = ~A, @ ~r (2.17) 

Furthermore, 

exp[--fl(HA~ + HA~)]be^,~A2 = exp(--flH~,)[~^, | exp(-- flHA2)I~^~ (2.18) 

Let PA, be the state given by 

Tr~vA[exp(-flHa,)] -1 Tr [ -exp( - f lHA, ) ] ,  i = 1, 2 

By (2.17) and (2.18), PA,,A2 = PA, | PA2" 
Using in addition (2.16), we arrive at 

Tr~^{exp[-fl(HA, + HA2 + WA,,A~)]} 

>/Trjr^ [exp( - flH^,)] Trot^ [ e x p ( -  flHA2)] 

x exp[--flpa, | pa~(Wa,,a~)] (2.19) 

Using the product structure of  PA, | PA~, (2.12), and charge conjugation 
invariance, one sees immediately that 

PA~ | PA~(WA,,A~) = 0 (2.20) 

Clearly, (2.15), (2.19), and (2.20) give 

Trg^, ~ Afexp( - f lHA,  u A2)] ) Tr~6~ [exp( - f l H A , ) ]  TrgAfexp( - f l H A ~ ) ]  

which by (2.11) completes the proof. 

Remarks. 1. If one replaces traces by integrals and the Peierls-Bogo- 
liubov inequality by Jensen's inequality, the above proof  yields the existence 
of  the thermodynamic limit in classical, charge-conjugation-invariant sys- 
tems; see Ref. 14 and I. 

2. Consider a system consisting of  only one kind of particle interacting 
via nonnegative two-body potentials, ~0.  In the definition of  T~A N'n~) and TA 
replace A A by AA, defined to be the Laplacian with Neumann boundary 
conditions. 
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Then 

TA~uA2 >~ TA~ + TA2, HA~A2 >/ HA1 + HA2+ WA~,A 2 

and PA~ | PA~(WA~,A) >~ O. Thus 

which also implies existence of the thermodynamic limit. 
3. The strength of  the arguments used in the proof  of Theorem 2.3 and 

Remarks 1 and 2 is that they do not impose restrictions on the range of the 
potentials. Their drawback is that they do not supply detailed information on 
the properties of the limit p(fl, z), such as dependence on boundary 
conditions. (a4~ 

3. CORRELATION INEQUALITIES 

First we recall some of the correlation inequalities of I slightly general- 
ized so as to be applicable in our proof  of Theorem B, Section 1, which we 
give in Section 5. Subsequently we establish some new inequalities related to 
the ones in Refs. 16 and 18, which we shall use to compare the correlation 
functions of systems in a magnetic field to those of systems without magnetic 
fields; see Section 5. Let ~ be a real Hilbert space, and let C be a (bounded), 
positive, quadratic form on ~ .  Let 4) be the Gaussian process indexed by ~4 ~ 
with mean 0 and covariance C. The associated Gaussian measure is denoted 
d#c(qS); see Ref. 20. Let (Xj, S~),j = 1, 2, 3 ..... be a family of measure spaces, 
and {p} = {dpj}~_, x a sequence of measures with the property that dpj is a 
finite, positive measure on (Xj, Sj), for allj. Let l~ = 1, 2,..., be a family of 
measurable mappings from X~ to ~ ,  i.e., 

IO'): x~Xs~  l~)~ ff f (3.1) 

such that 

L fx~ dpj(x) expE�89 ~ < 
j = l  

Following the notations of I, Section 2, we define 

C({p}, 40 = j=l ~ fxj dpAx) cos q~(l~) 

We introduce a partition function E(C, {p}) by 

E(C, {p}) = Z({p}) = f dpc(C~) exp C({p}, qS) 
J 

(3.2) 

(3.3) 

(3.4) 
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For Fe Ll(dpc) we define 

(F}c,{p} ~ (F}M = E({p}) -~ f+c(,) F(r  exp C({p}, r (3.5) 

In the following, m, n, l, g .... denote vectors in ~ .  

T h e o r e m  3.1. 

(i) cos r  > 0 
{p} 

(ii) cos r ~ cos r 
j = 1 i =  1 {p} 

- cos r [ I  cos r i 
j = 1 i =  1 {p} 

- cos r cos r i ~> 0 
{p i {p} 

(iii) (e*(~); h c~ r  ~ < O i =  a p} 

Remark. For {p} = {Pl, 0, 0,...} Theorem 3.1 is contained in Theorem 
3.1 of  paper I. See also Ref. 21. The proof  of the present generalization is a 
trivial adaptation of  that of  Theorem 3.1 of  I, which we do not wish to present 
here. We also recall that 

(cos r162 is decreasing in C 
(3.6) (er is increasing in C 

where the order relation for C is the one of  quadratic forms. See I, Corollary 
3.2. 

L e t f  ~ be a bounded, real-valued function on X~,j = 1, 2, 3,..., and set 

C({p}, {f},  r = j=,~ fxj dpj(x)cos[r + f x  u'] (3.7) 

Let E(C, {p}, {f})  and (-)c,b},{I} be given by (3.4) and (3.5), respectively, 
but with C({p}, r replaced by C({p}, {f}, r 

T h e o r e m  3.2. Let {fo)};=~ and <->{o},{I}- <->c,M,{f} be as above. 
Suppose dpj >~ d[pj'[ for all j = 1, 2, 3 ..... Let ~, fl be real numbers and m, n 
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vectors in ~ .  Then 

(COS r cos q~(n)){p} - (cos[q~(m) + ~] cos[q~(n) + ]~]){p,},{f} 

>t Kcos q~(m)>~}<cos[~(n) + t~]>~<t, l/} 

- (cos[~b(rn) + ~])~p,),{f)<cos r 

R e m a r k s .  1. Using the identity 

COS ~j = (1)k ~ COS ej~j (3.8) 
j = 1 {e j} k j = 1 

with e~ =- +__ 1,j = 1, 2 , . ,  k,  one obtains trivial generalizations of Theorem 3.2. 
2. As a special case of Theorem 3.2, we note that 

(cos qS(m))ip } >7 I(cos[qS(m) + ~])(p'l, lf~[ 

This inequality enables us to compare correlation functions of systems with 
Bose (resp. Fermi) statistics, with or without couplings to an electromagnetic 
vector potential. See Section 5. 

3. Theorem 3.2 is a variant of recent inequalities due to Lebowitz (lm and 
extended by Messager et al. ~ 

Ou t l ine  o[ Proo[  (see also I and Ref. 18). Let ~b 1 , ~b e be two independent 
Gaussian processes with mean 0 and covariance C. Then 

(cos qS(rn) cos qS(n)){p) - (cos q~(m + e) cos ~b(n + fl))/F),lf~ 

_ {(cos ~b(rn)){pI(cos[~b(n) + fl])lp,},(f} 

- (cos[r + ~])/p,i,/f}(cos q~(n))(o}} 

= Z ( { ) O } ) - - 1 ~ . ( { p , } ,  {.]'})-I fd.c(~1) "C(~2.) 
x {COS q~l(m):F cos [~bz(m) ,+ ~]}{cos q~l(n) • cos[qSz(n ) + fl]} 

x exp (dpl + dpj')(x){cos[4)l(l~ + cos[q~2(l~ )) +f~)]} 
\ 1  = 1 \ 

+ (dpj - dp j ) (x ) {cos[~( l~  - cosl-q52(@) + f ~ ) ] } )  (3.9) 

Since the partition functions are positive, it suffices to show that the func- 
tional integral on the rhs o f  ( 3 . 9 )  is nonnegative. We define 

Z ( I /x /2 ) ( - r  + r (r (1/x/2)(V + X) 

J~rg Fr6hlich and Yong Moon Park 
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This transformation is orthogonal in (~b~, ~b2) space. Thus 

d#c(d?,) d#c(~bz) = disc(tP) dpc(Z) 

(see I). Moreover, 
cos q~l(m) + cosE(kz(m) + ~3 

cos q~l(m) - cos[q~2(m) + ~] 

---- 2 s in{~2  [~P(m) + ; ] }  s in{~2  [z(m) + ;1  } 

Also, since dpj and dp/ are real measures with dp~ >~ t~pj'l, w e  have 

dp~ + dp/~> 0, dpj - dp/>~ 0, for a l l j  (3.10) 

Inserting all these identities into the functional integral on the rhs of (3.9), 
expanding then the exponential, and taking into account inequalities (3.10), 
we see that the functional integral on the rhs of (3.9) can be written as a sum 
of terms of the form 

with F real-valued. Thus it is nonnegative. �9 

We conclude Section 3 by sketching a simple generalization of Theorem 
3.1 which is useful for analyzing Bose systems coupled to the quantized radia- 
tion field. Let C({p}, {f}, ~b) be as in (3.7). We now suppose that the phases 
f(/) are linear functions of a Gaussian random field A with Gaussian distribu- 
tion d#(A), i.e., f~) = A(h~)), for some ~Vf-valued functions h~ ), j = 1,..., oo. 
Let 

= .fdtzc((D)dp(A)exp[C({p}, {A(h)}, ~b] (3.11) E({p}) 

(-)~p} = E({p}) -a fdpc(~b ) dkt(A) - exp[C({p}, {A(h)}, ~b)] (3.12) 
d 

T h e o r e m  3.3:  

(i) (cos[q~(m) + A(/)])~p/~> 0 

(ii) (cos[q~(m) + A(I)]; cos[~b(n) + A(h)])~p} >~ 0 

(iii) (eg'(")+A(~ cos[~b(n) + A(h)])/p) ~< 0 
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Remarks. 1. The process Z - (qS, A) is a multicomponent Gaussian pro- 
cess. Theorem 3.1 applies to multicomponent processes; see I. Thus Theorem 
3.3 follows from Theorem 3.1. Incidentally, the proofs are simple variants of 
the proof  of  Theorem 3.2. 

2. Identity (3.8) yields obvious generalizations of  our inequalities. More- 
over, in Theorems 3.1(ii) and 3.3(ii) one may replace cos[qS(m) + A(/)] by 
eli4,(,,) + A(~)] ; see I. 

4. Q U A N T U M  STATISTICAL M E C H A N I C S  A N D  
F U N C T I O N A L  INTEGRALS 

4.1. The Uses of Gaussian and Wiener  Measures 

First we recall the functional integral formalism developed in detail in 
Refs. 12 and 7 and I. We consider N-particle systems with Hamiltonian 

N 

H(A N)= -- ~ (1/2mi)Ai A + U((X)N) (4.1) 
i = 1  

U((X)N) = ~ qiqj V(xi, xj) (4.2) 
l < ~ i < j ~ n  

and V is a positive (semi-) definite two-body potential. 
In this subsection the spin (and other internal degrees of freedom) of the 

particles plays the role of a spectator and is suppressed in our notation. 
We propose to express the integral kernel TAP((x)N; (Y)N) of the 

operator exp[ - flH(A u)] in terms of a combination of Wiener integrals which 
arise by using the Feynman-Kac formula and Gaussian functional integrals, 
which were used already in the classical case and in I. The path space of  the 
Wiener measure can be chosen to be 

f~ = X ~ (4.3) 
e [0 ,  cr 

where ~ --- ~ is the one-point compactification of R v. Hence, f~ is a com- 
pact Hausdorff  space, and the Borel sets generate a natural o--algebra on ~2. 
The Wiener measure P,,#(x, y; do), conditioned on those paths co s f~ with 
co(0) = x, co(~ = fl) = y, and depending only on {co(z): 0 ~< z ~< fl}, is a 
~r-additive, finite measure on fl. It is the path space measure of the process 
with transition function exp(tA/2m). The kernel of exp(tA/2m) is denoted by 
p,,'(x, y). We have 

y) = ~ P,,P(x, y; dog) (4.4) p,,~(x, 
.)a 
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Let ZAP(O)) be the characteristic function of the subset 

{o): o)(r) ~ A, for all z ~ [0, fl]} c f~ 
We set 

P~,A(X, Y; do)) = )~Aa(o))P,J(x, y; do)) (4.5) 

This is the path space measure of the process with transition function 
exp(tAA/2m), where A A is the Laplacian with 0-Dirichlet data at c3A. Let 

N 

PAa((X)N, (Y)N; d(o))N) ~ M P~m,.A(Xj, yj; do)j) (4.6) 
j = l  

By the Feynman-Kac formula (see, e.g., Refs. 19 and 12) 

(Y)N) = fn• PAa((X)N' (Y)N; d(o))N) 

As in I, we now express exp[-~o p dr U((o)(r))N)] by means of a Gaussian 
functional integral. Let 

V(x, ~; x', r') -= V(x, x') 5(z - ~') (4.8) 

Since the two-body potential V has been assumed to be positive (semi-) 
definite, so is V. Let 

L2(R~ + ') = L2(~ ~ x [0,/~3, d"x dr) 
Let 4) be the Gaussian process with mean 0 and covariance V indexed by 
L2(N~+ 1). The corresponding Gaussian measure and expectation are denoted 
by d/~v and ( - ) v ,  respectively. We recall some well-known formulas: 

(exp[ir v = e x p [ -  (1/2)(f, V f ) ]  

:exp[ir = ( exp[ - i~b( f ) ] )v  i exp[ir  (Wick ordering) (4.9) 

From these we obtain 

(j=~l :exp[ir = exp[--l <~<j<.N(f' VfJ)l (4.10) 

We assume temporarily that V(x, y) is continuous in x and y and choose 

fj(Cr, v)) = qj fi(x - o)j(r)), j = 1, .... N 
This yields 

( ~(]o :exp[iqi ; r r) dr]:)v = exp{- f f  d~ U([o)(r)]u) } (4.1 l) 
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We set 

Jiirg Frohlich and Yong Moon Park 

a~,A,o(x,y)=--fPPm,A(x,y;d~):exp[iffdp(oo(z),'c)dz]: (4. t2) 

It should be pointed out that a~m,A,~(x, Y) is really the integral kernel of the 
one-particle operator 

T(exp{ - 8 [ -  (1/2rn) Aa - i~b~ - W]}) 

where T denotes time-ordering, i~b~(.) --- i~b(., r) is a purely imaginary one- 
particle potential, and W(x) = �89 x). 

From (4.7), (4.11), and (4.12) we deduce 

~bAP((X)N; (Y)N)= ~j=I~I1 ~Pm~,A,q/~(xj, y~)~v (4.13) 

Inserting this into (1.6) and (1.8), one obtains an expression for the partition 
function and the RDMs in terms of Wiener and Gaussian integrals. 

4.2. Taking into Account  Statistics: 
An Exercise in Mul t i l inear  Algebra 

The purpose of this subsection is to express the partition function and the 
RDMs (or ITGFs) of systems with Bose or Fermi statistics in compact form 
in terms of Gaussian integrals (" Boltzmann statistics" has been treated in I). 
This will permit us to apply the correlation inequalities of Section 3 to 
construct and investigate the thermodynamic limit (at least for Bose gases). 
We start with stating the main results of this subsection. We consider a system 
of finitely many species of particles with Bose (~ = + 1) or Fermi (c = - 1) 
statistics. First it is assumed that the particles are spinless, but at the close 
of  this subsection we show how one can incorporate spin. The Hamiltonian 
H~ ) is as in (4.1) with rn 1 . . . . .  mi~,...,mi,_l+l . . . . .  mN, ql . . . . .  
qil, .... qi,_1+ 1 . . . . .  qu, and l is the number of species. 

We define 

PA"(m'z; x' Y; ~Pl = j~=, ~ -- zj Jn P~^(x, y; dog) 

x ~ :exp i ~(e~(~ + k~), z) d~ : (4.14) 
k = O  

S^,,(m, z; ~) = f dVx pA,,(m, z; x, x; dp) (4.15) 
& 
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We assume (at least temporarily) that 

K -= sup V(x, x) < oo (4.16) 
XE~ v 

Since by (4.9) 

:exp[++-iqf~4~(~o(r),r)drl: 
<~exp[(q2/2) f~v(co(r) ,co(~))dzl<~exp(f lq2K/2 ) (4.17) 

the series on the rhs of (4.14) converges absolutely if 

ze aK/2 < 1 (4.18) 

For Fermi statistics one can relax conditions (4.16) and (4.18). See Sections 2 
and 5. But for the time being they are imposed without further mention. 
Let A = (Aij) be some N x N matrix. We define 

N 
(~N)(Aij) = 2 s [ I  Ajn(j) ( 4 . 1 9 )  

r~S N j = l  

where ~r(~) is the signature of the permutation n. Clearly 

6~](A~j) = det(A), (N) 6+ ~(Azi ) = perm(A) (4.20) 

T h e o r e m  4.1. Consider a system of/species of (spinless) particles with 
statistics ek, mass rn k, charge qk, and activity Zk, k = 1 ..... l, in the grand 
canonical ensemble at inverse temperature ft. Let e = (E~ .... , e~), z = 
(z~ ..... z~). Then the partition function is given by 

--a,,(fl, = Z)=  xp SA,,,(mk, Zk; qkO) (4.21) 
k 

and the correlation functions by 

PA,,(fl ,  Z ;  (X1)i ,  "'" (Xl)i,, (y l ) i~  ... (yl)i,) 

=(k=I~l 6(Of Z a . et~ qk~b))~A, ( fl, Z) (4.22) '~ I k bZ k'A.,~',t", 2k ; Xi g, yjk ; 

where 

(--)h,c(fl~ Z) = ~h,E(fl ,  Z ) -  1 exp SA,~k(mk, Zk ; qk~)  [] 
"X I_k= 1 

For later purposes we explicitly consider the special case of charge- 
conjugation-invariant systems of two species of particles; see Definition 1.1. 
We define 

CA,,(fl, z; q~b) = SA, E(m, Z; q~b) + SA,,(m, z; --q(a) (4.23) 
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Theorem 4.1 then takes the following form: 

T h e o r e m  4.1'. For the charge-conjugation-invariant systems intro- 
duced in (1.4)-(1.8) 

EA,~(fl, z) = (exp Ca.~(fl, z; q(o)) v (4.21') 

pA,,(/~, z; (X)N(X')M; (Y)N(Y')M) 

=~3~N)(z 0 , qdp)) ~z PA,~(13 z; xi, y j; 

X O~ M) z PA, e(fl, Z ; Xl, yj , -- q (t~, Z) (4.22') 

where 
(--)A,~(/~, Z) = EA.~(/3, Z)-~(--exp CA,~(/3, z; qqS)) v 

Remarks. 1. The expectation (--)A.~(fi, Z) defined in (4.22') is given by 
a positive probability measure, because the "ac t ion"  CA,~(/~, z; qq~) is real- 
valued. See (4.14), (4.15), (4.23). 

2. If the system is not charge conjugation invariant, as in Theorem 4.1, 
then (-)A.~(/~, z) is given by a complex measure. 

3. Expressions for ITGFs similar to the ones given in Theorem 4.1 for 
the RDMs can be derived, too, but are more complicated; see Section 4.3. 

4. Spin is incorporated at the end of this section. 

Proof of Theorem 4.1. The opening move in this proof consists of first 
reformulating Theorem 4.1 in a more reasonable terminology. It then follows 
from standard identities of multilinear algebra, which, for the convenience of 
the reader, we briefly review in Section 4.3. 

First, we notice that it really suffices to prove Theorem 4.1 for one 
species of particles only. The case of many species will turn out to be an 
obvious generalization. 

We define 

Aqo = A~,q4, = r e x p [ -  f ( -1 /2m)A A - iqqb~ - q2 W)] (4.24) 

where W(x) = �89 x). By the Feynman-Kac formula, the integral kernel of 
Aqo is given by 

Aq,(x, y) - ~,A,q~(x, y) 

=fnP~ ,A(x , y ;doo ) : exp l i f : r  (4.25) 

[see formula (4.12)]. 
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In order to express the kernel of ( A q j  we use the following well-known 
result: 

Lemma 4.2. 

f~ ...... ;_l~I: t, :exp[iqf:(a(ooj(z),~) 

= Pk"+l)/~(Xo, X n + l ;  dco) :exp iq qS(~o(z +jf i ) ,  z) dz : 
j=0  

Proof. An immediate consequence of  the semigroup property of  
exp[t(1/2m)A a] and the F e y n m a n - K a c  formula, m 

Thus 

;o ' l I ;  ] (Aqr y) = W~(x, y; dm) ~ :exp iq c~(co(z + kfl), ~) & : 
k=0 

(4.26) 
This identity and (4.14) yield 

PA,~(fl, z; x, y; r = ~ d-1. zJ(Ae)J(x, y) = - e  ln(1 - ezA4~)(x , y) (4.27) 
j = l  J 

and 

Z~zzpa.~(fl, z; x ,y;  r = z{(1 - ezAe,)-lA~}(x,y) (4.28) 

Furthermore,  by Lemma 4.2, (4.14), and (4.15), 

exp SA,~(rn, z; qS) = exp ~ dVx pa.~(m, z; x, x; r 
ja  

= e x p [ - e  Tr ln(1 - ezAr = det(1 - ezAe) -~ (4.29) 

In this reformulation, Theorem 4.1 maintains 

EA,~(fl, z) = (det(1 - eZAq4~)-')v (4.30) 

by (4.21) and (4.29), and 

PA,~(fl, z; (X)N , (Y)N) = (6~N)(z{(1 -- ezAqr162 Yj)))n,~(fl, z) (4.31) 

where 6~ N) is defined in (4.19), and (--)A.E(fi, Z) in (4.22); see (4.28). Next, 
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using (4.12), (4.13), and (4.25), we see that 

~]Afl((X)N; (T)N)-~-(j=FI 1 Aq(o(Xj, YJ))v  (4.32) 

In formula (1.6) we expressed EA(fl, z) by 

N=~ NN.y ~ f 

Z 

N 

Hence, by (4.32) and definition (4.19) of ~N), 

( 1 ;d(X)Ng):N)(zAq4~(Xi, Xj))) (4.33) zA, , ( f l ,  z )  = ~ 
N=O 

and we have interchanged taking <->v and Y~=o ( l /N!)~ d(x)N- [this is 
permitted if z exp(flqZK/2) < 1; see (4.18)]. The equality of the right sides of 
(4.33) and (4.30) is well known (in the sense of formal power series it holds 
in general, and ifz exp(#qZK/2) < 1 both right sides are well defined). See also 
Section 4.3. Next, by formulas (1.8), (4.32), and (4.19), 

OA,,(/~, Z; (x)N, (y)~) 

zN+N ' f =zA,~(/~,z) -1 d(u)N, Y E ~"~ 
N'=0 N ' !  ~SN+ N, 

x Wff((X)u(U)N,; ~((y)N(U)N,)) 

= EA,~(fl, z)- 1 ~ o  ~ .  d(U)N, 6~N + u')(zAqe~(vi, wj) v (4.34) 

where 
(v l  . . . . .  v~,, v~+~  . . . . .  v ~ +  ~,) = (x~., . . . .  x ~ ,  u~ . . . . .  u~,)  

( W I ' ' ' "  WN' WN+ 1 ..... WN + N') = (Yl  . . . . .  YN' lgl .... ' blN') 

The reader familiar with multilinear algebra will recognize the rhs of (4.34) 
as being identical to the rhs of (4.31). If we finally insert (4.28) into the rhs of 
(4.31), the proof of Theorem 4.1 is complete for the case of one species of 
particles. The case of finitely many species follows in the obvious way. [] 

We conclude this subsection by showing how to incorporate spin in this 
formalism. Again, it clearly suffices to consider the special case of one species 
of particle. The Hilbert space of the spin degree of freedom of one particle is 
C2S+ 1, with S the total spin. We choose an orthonormal basis {qS,}s=-s in 
C2S+ 1 labeled by the eigenvalues p of one component of the spin operator. 
The basic fact to be noticed is that the total Hamiltonian H(ff ) [see (4.1)] 
is spin-independent (although that is not absolutely crucial for the existence 
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of  a functional  integral formalism,  as ment ioned  in R e m a r k  2, Section 1.3). 
Let r = (x , /0 ,  and define 

AqSr -- Aq4~ ~ "[Is 

where A~o is given by (4.24) and (4.25), and 
C2s+ 1. The  integral kernel o f  AqS~ is given by 

Since 

we have 

so that  

(4.24') 

i s  is the unit  matr ix  on 

S ~ Aqr r') = ASc~((x, F), (x' ,  p'))  = Aqg,(x, x ' )  6 u u' 

Trc2s+~(ls) = 2S + 1 

Yr ln(1 - EzAS4,) = (2S + 1) Tr  ln(1 - ezAqr 

det(1 - ezAS4,) -~ = det(1 - e z A ~ )  -`(2s+ 1) 

The p r o o f  o f  Theorem 4.1 extends to the case o f  a system of  particles with 
spin and,  together  with the above  remarks ,  gives (see also Section 4.3) the 
following result" 

Theorem 4.1" 
EA( fl, z) (det(1 s -~ = - ezA~4,) ) v  = (det(1 - ezAqe, ) - ' (2s+l) )  v (4.21") 

PA.,(fl, Z; (r)N(r')u) = (6~N)(z{(1 S -1 S , -- eZAq4, ) Aqe~}(r i, rj )))A,,(fl, Z) (4.22") 

where 
(--)A,e(fl, Z) ~--- EA(fl, Z ) -  1 ( I  det(1 - ezAq~)- ' (2s+ 1))v �9 

The purpose  o f  the next subsection is to briefly review some mult i l inear 
algebra,  sketch the p r o o f  of  the above  identities, and find compac t  expres- 
sions for  corre la t ion functions and I T G F s .  

4.3. Exercises in Mul t i l inear  Algebra 

Let ~ be a complex Hilber t  space of  dimension n <~ 0% {ul}~=o a 
complete  o r t h o n o r m a l  system in ~,, andf~  , . . . , fu and  91 ..... gN vectors in ~ .  
Let A be a trace-class opera to r  on ~ ,  i.e., I[A/II = TrIAl < oo. The symbol  
| denotes  the symmetr ic  tensor  p roduc t  if  E = + 1 and the ant isymmetr ic  
tensor  p roduc t  if  e = - 1. We define 

| A | = A  
m times m t~mes 

o , o = c ,  A | 1 7 6  1 
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For  f l , . . . , f ,  in ~ we set 

j = l  

The scalar product  on ~| is denoted ( . ,  . ) ,  for all m = 0, 1, 2,.... 
We introduce an "unnormal ized ,  reduced density ma t r ix"  p, by 

P~(91 ..... 9N,Jl ..... fu)  

( r e+N) !  | u . | 1-7[ | 
m =O Dg! i, = j k = l  

j = t  k = l  

(m + N)!  | u. | l~ | b'k, 
lj 

m = O  m !  i~ i .  k = l  

j = l  k ~ l  

When e = + 1 (Bose statistics) we assume that IIA II < 1. 

(4.35) 

Lemma 4.3  : 

/9,(91 . . . . .  9N, f ,  .... , fN) = det(1 -- eA) -~ 6~m((9i, (1 - ~A) - tAf j ) )  

Proof. It suffices to prove Lemma 4.3 in the finite-dimensional case. 
The p roo f  for  the infinite-dimensional case follows by a s tandard limiting 
argument ,  provided qbAlll < m, and ILALI < 1, when e = + 1. 

We first consider Bose statistics, E = + 1. Let  ~ = i t + i{ 2 be the complex 
Gaussian process with mean 0 and covariance 1, indexed by ~ ;  i.e., 

f d l t (~)~( f )= O, f d#(~)~(f )~(g)= 2 ( f  g )  (4.36) 
J d 

where 

d#(~) = (2=)-" e x p [ - � 8 9  { ) ]  1~] d{=* d~e 2 

is the normalized Gaussian measure. 
By (4.35) and (4.36) 

p~(9, ..... 9N, f ,  ..... fN) 

f 2"rn, ,~ , .  [~ �89 lyI {(UO~(Aui)d#({) 
m=O k = l  j = l  
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Note that Z~=~ ~(Etj)~(Auj) = (4,  A ~ ) .  Thus 

; ~ ( ~ ,  .... , ~ ,  A, . . . ,  f~) 

m= ~176 1 f 2~n '  13] = ~o= . (~,  A { > "  k=1 l { (gk){ - (dA)  dlt(O 

= f k=11NI l{(ffk)eAfk)exp[--�89 ( 1 -  A){)] =21 f i  d~=' d$, 2 

= , 2 : ) "  Cexp[-�89162 (1 - A)r IeI d47 d4, ~ 
d ~=1 

• a<#(<a,,  (1 - A ) - 1 A f t > )  

= det(1 - A)-* 6(lm((9,, (1 - A)-1Afj))  

This completes the proof for e = 1. 
Next, we consider Fermi statistics, e = - 1 .  Let 0= I and 0= z, 

o~ = l .... , n, be totally anticommuting variables, and let 5 be the Berezin 
integral, which may be defined by the property that 5exp(01, A0 2) = 
det(A), where 

(see, e.g., Ref. 28). It is known and follows easily from the above definition 
of the Berezin integral by differentiation that 

P - - l ( 0 1  ... . .  fiN, f1 ..... fN)  ~" m=0~ m.[  i 1 2  m k = l  01(f fk)O2(Afk)  

• f i  ~m(u4)O2(Aui ,) exp(01, 02) 
j = l  

= l-~ 0*@k)02(Afk) exp(01, (1 + A)02) 
k= 1 

= a? l ( (g i ,  (1 + A)-  1Afi) ) det(1 + A) If 

Remark .  The purpose of introducing the Gaussian (resp. Berezin) 
integral is merely to reduce somewhat lengthy combinatorics to known 
properties of those integrals. It could be avoided completely. 

Next, we introduce the standard Fock space 

m=O 
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and define the operator F~(A) on ~ by 

F,(A) = (~ A | 
m=O 

Note that 

We define 
r , ( A ) r , ( 8 )  : F , (A  . B) 

(4.37) 

(4.38) 

d Fr tA~l (4.39) dF,(A) = ~ ,t J,,=o 
This is Segal's formulation of "second quantization"; see, e.g., Ref. 29. As a 
corollary of Lemma 4.3, we have 

Tr[F~(A)] = det(1 - cA) -~ (4.40) 

[Set N = 0 in Lemma 4.3 and use (4.35) and (4.37). A direct proof of (4.40) 
not involving Gaussian (resp. Berezin) integrals is easily found" By 
analyticity, it suffices to prove (4.40) for self-adjoint A. Both sides in (4.40) 
are unitary invariants. Thus one may choose A to be diagonal. Then (4.40) 
becomes a trivial exercise.] 

We may now define "correlation functions" and "ITGFs."  The former 
are given by 

<j=~ dF~(BJ))A-=[Tr F~(A)]-1 Tr [  F~(A) j--~l dF(Bj)I (4.41) 

The latter are given by 

~.=lYI dF~(BJ)~j>A = [Tr FE(A)] -1 

• Tr[F~(A) l -~+q  l~I {dF(B~)F~(A)~,+I-~,}] (4.42) 
j = l  

where 0 ~< z~ ~< % ~<'-'~< ~,, ~< 1, and A = e h, for some operator h with 
Re h < 0. Obviously 

so that it suffices to calculate the rhs of (4.42). By (4.39) and (4.38), 

0 m 

= Tr[F~(A)] - 
~sl "'" ~s,, 

xTrIF~(Aa-*'+*'~['e~JB'A*'+~-*J)]j= ~ /,,~, ..... ~==o (4.43) 
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Next note that 

Tr FE(A) = det(1 - cA) -~ = e x p [ - c  Tr ln(1 - EA)] 

Thus, using Leibniz' rule, 

= 1 A par t i t ions  j = 1 
C~ ,..., C M 

j =  1 / 2 l S t  . . . .  = s m = O  

The rhs can be calculated by using the formulas 

d 
- -  Tr ln[1 - cA(s)] --- - e  Tr{[1 - eA(s)] - 1A'(s)} 
ds 

d 
dss [1 - cA(s)]-1 = e[1 -- cA(s)] - 1A'(s)[1 - cA(s)]-x 

with A'(s) = (d/ds)A(s). 
Finally, we note a connection between correlation functions and reduced 

density matrices: Let Bj, j = 1 ..... N, be given by 

Bjg = (gj ,  9)Jj for all g ~ 

Let pE be given by (4.35) and (--}A by (4.41). Then 

P~(g~ .... , gg, f~ ..... fN) = Tr[F~(A)] dF~(Bj): (4.45) 
j= 

where :-: is the usual Wick order of  products of operators on 4 -  [The 
rhs of  (4.45) can be calculated by using (4.41) and (4.44). Comparison with 
Lemma 4.2 then completes the proof  of  (4.45).] 

5. T H E  T H E R M O D Y N A M I C  L I M I T :  U N I F O R M  B O U N D S ,  
E X I S T E N C E ,  A N D  P R O P E R T I E S  

Stability in the grand canonical ensemble and existence of the thermo- 
dynamic limit of  the pressure have been discussed in Section 2. The main 
purpose of this section is to derive upper and lower bounds on correlation 
functions which are uniform in A, prove the existence of  the thermodynamic 
limit of  the correlation functions of  charge-conjugation-invariant Bose 
systems (provided the activity is so small that the system is stable), and 
estimate correlation functions of  systems with Fermi statistics by those of 
Bose systems (resp. correlation functions of  Bose systems in a magnetic field 
by those of  systems in zero magnetic field). 
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Unless mentioned otherwise, the systems are assumed to be charge con- 
jugation invariant. The particles may have spin. 

where 

j = l  

which is finite, provided 

5.1. Uni form Upper Bounds on Part i t ion and 
Correlat ion Functions 

The main auxiliary estimates required in this section have been already 
derived in I, Section 2.2. Thus, we may be brief. In Section 4.2, (4.17) we 
have shown that 

:expliqtfdz~a(o)(z),z)l: <~exp(flq2K/2) (5.1) 

with K = supx ~ ~ V(x, x). Furthermore, by (4.5) 

P~,A(X,y;&o)<~ P~(x'y;dog)=kj~- ) exp L 2j# 

Using (5.1) and (5.2), we propose to estimate: 

(I) IP .̂E(fl, z; x, y; qqS)L = [ln(1 - EzAq4,)(x, Y)I 

[see (4.14) and (4.27)]. 

(II) z ~ Pa,,(fl, z; x, y; qqS) = I z { ( 1  - EzAq~) 1Aq4) }(x, y) l 

[see (4.28)]. 

(III) ]exp SA,,(m, z; q~b)l = Idet(1 - EzAqe)-'l 

[see (4.15) and (4.29)]. 

(I) By (4.26), (4.27), (5.1), and (5.2) 

Izl j [Pa,,(fl, Z; x, y; q~)l ~< ~ -)-[(Aq4,)S(x, Y)I 
j = l  

<~(2~m)V/2~ [Izlexp(flqZK/2)]J [ 'x-y'2 l 
j= l  j l  +v/; exp 2 ~  ] 

<~ p(fl, z, q) (5.3) 

[Iz[ exp(flq2 K/2)] s 
(5.4) j i + v/2 

Izl exp(flq2K/2) < 1 (5.5) 
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(II) By (4.26), (5.1), and (5.2) 

Iz{(1 - ezAqe)-1Aq4~}(x, y)] <~ ~ IzlJl(Aqo)J(x, Y)r <<, fi(fl, z, q; x, y) (5.6) 
j = l  

where 

fi(fl, z ,q;x ,y)=_(2%m)V/2~[lz lexp(f lq2K/2)]  j ~ - j=l  ~ expL I x ~ ) ;  12] (5.7) 

and the rhs converges if (5.5) is satisfied. 
It is trivial to check that (5.3)-(5.7) remain true if Aqo is replaced by 

AqS~ [see Section 4.2, (4.24')1, i.e., if spin is included. 

(III) We first present an upper  bound that holds for  e = + 1 : 

Idet(1 - ezAq4a)-E I ~< explTr ln(1 - EzAq4,) I ~ exp[p(fl, z, q)lAI] (5.8) 

as follows f rom (4.29) and (5.3). The rhs of  (5.8) is finite if Izl exp(flq2K/2) < 
1. Under  this condi t ion identity (4.30), i.e., 

EA,~( fl, Z) = (det(1 -- ezAq4,)-~)v (5.9) 

holds r igorously as an equat ion between holomorphic  functions o f  z with 
Izl < exp(-flq2K/2), as follows from (5.3) and Lemma 4.3 by a simple 
limiting argument .  By analyticity in z o f  bo th  sides in Eq. (5.9), this identity 
remains true for all z > 0 for  which Idet(l - ezAq4,)-'l is bounded uniformly 
in q~, at the least. F rom Theorem 2.2, (2.5)-(2.6), we know that  for  E = 1 
(Bose statistics) the domain  of  ho lomorphy  o f  

(det(1 - zAq4,)- 1 det(1 - zA_q~)- 1)v 

does not  include the whole positive, real axis. Indeed, given 6 > 0, there 
is a bounded  region (e.g., a cube) A a such that  Ea, l( fl, z) is divergent at 
z = 1 + cS for  all A ~ A a. Therefore  det(1 - zAq~) -~ det(1 - zA_qe~) -1 and 
thus Idet(1 - zAq4,)-ll cannot  be bounded  uniformly in q~ for z = 1 + 6, 

= Aa. [However ,  for  superstable potentials V, 

EA, l(fl, z) = (det(1 - zAqr 1 ~V 

exists for  all z > 0.] 
Next,  we set e = - 1  (Fermi statistics). Then 

- z A *  ~1. 1/2 Idet(1 + zAq4,)l = det{(1 + zAqe)(1 + ~'q4,J~ 

= exp{�89 Tr  ln[1 + z(Aq~ + Aq5 ) + zZlAqelz]} 

exp{�89 + * Aqo) + z21Aq,12]} (5.10) 
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The inequality follows directly f rom 

l n ( l + x ) ~ < x  for - 1  < x <  oo 

and the spectral theorem. We now notice that  

Tr  Aq*r = Tr  A _q~ = .IA d"x A X) 

rr(AqoA:o)= fAa X fAd',,A.o(x.y),2 
Therefore,  using (5.1) and (5.2), we have 

Tr(Aq+ + Aq*r <~ [exp(�89 

Tr(Aq~A*e) ~ [exp(#q2 K)](~m/#)'/2lA [ 
so that  

]det(1 + z A q J  <~ exp({z[exp(�89 "/2 

+ �89 (5.11) 

Notice that  f rom (5.10) and the Schwarz inequality for  ( - ) v  it follows that 

EA,_I(/~, z) 2 ~< (exp  z[Tr(Aqe + A_qo) ] )v (exp  z 2 TrlAqol2])v (5.12) 

The first term on the rhs of  (5.12) is the part i t ion function of  a charge- 
conjugat ion-invariant  quan tum mechanical  system with "Bo l t zmann  statis- 
tics." Estimates (5.10)-(5.12) are very crude (far f rom being useful when the 
potential  V has local singularities), but  suffice for the purposes of  this paper. 

F rom now on we study charge-conjugat ion-invariant  two-component  
systems, as in Theorem 4.1', unless stated otherwise. It  is assumed that  the 
activity z > 0 is such that  

=--A,~(#, Z) = (exp  C^,~(#, z; qqS)) v 

is finite [e.g., 0 < z < e x p ( -  #q2K/2) for e = 1, and 0 < z < oo for ~ --- - 1, 
K <  oo]. 

By (4.14), (4.15), and (4.23) 

CA,~(fl,z; qqS) = - -  z s d"x pS~ r x x; do:,) 
j = l  J m,Ak 

x I ]  exp q2/2 d-c V(o9(.c + k#), co(z + kfi)) 
k=O L 

1 x cos q ~ dz ~(o~(z + k3), z) (5.13) 
[_ k=O 
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i.e., CA,,(fl, z; qr is of the form 

with 

[compare to 
in r 
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fdp'A,j(~) COS[r (5.14) 
j= l  

IdpA2)l = d p l j  for all j (5.15) 

Section 3, (3.3)]. In particular CA,, is real-valued and even 

T h e o r e m  5.1 (Upper bounds). For e = + 1, z > 0, 

[pA,,(/~, Z; (X)N(X')M; (Y)N(Y')M[ 
<~ (5(1N)(~(fl, z, q; x~, y j)) 6(1M)(~(fl, Z, q; X/, YS')) 

with 

[z exp(flq2 K/2)] j 
~(3,  z, q; x, y )  = 

j = I S / 2  

for 0 < z < exp(-flqZK/2) [see (5.7)]. 

ProoL By (5.13) 

exp[ Ix-y[2] 
I j 

<->^,,(fl, z) = EA,,(fl, z ) -x<-exp  CA,,(fl, z; qr 

is the expectation given by a positive probability measure. Hence 

. 6(m{zL~ ~R, . ) [PA ,(/% Z; (X)N(X')M; (Y)u(Y')M)[ <~ , \ OZ VA,,,e Z; X,, yj, qr 

q4 x 6~ M) z ~z PA, E(B, Z ; X/,  YS ' 

Next 

I-(N)/~?~z +qr  ~ < 6]u)(zr~--~ p^,l (fl, + qr o, t z  pA.,(fl, z; xi, ys; z; xl, ys; 

as one easily deduces from (4.19) (definition of 6~ u)) and (4.14) [definition 
of p^.,(m, z; x, y; __+ qr 

Use of formula (4.28) and inequality (5.6) completes the proof. �9 

T h e o r e m  5.2 ([RDM_I[ ~< RDM+I) .  For  charge-conjugation-in- 
variant, two-component  systems 

[PA,-1 (fl, Z; (X)N(X')M; (Y)N(Y')M)[ ~ Pa, + l(fl, Z; (X)N(X')M; (Y)u(Y')M)] 

i.e., the Bose R D M  dominates the absolute values of the Fermi R D M  
pointwise. 
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Proof. By definition [see (4.19)] 

6~N)(Z ~ pA,~(fl, Z; xi, Yj; +_qc~)) 

N 
= Z d~) [ I  z ~zz PA.,(fl, z ; x j, y~j); +_ qq~) 

r c ~ S  N j = l  
w h e r e  

i fo Z~zPA.~(fl, Z;X,Y; --+q4) = d - l z  J P~,A(x,y;de)) 
j = l  

xexp f~  f~PdzV(o~(z),co(z))l 

x exp " q & 4(co(z + kill ~) 

[see (4.14) or (4.28), (4.26)]. 
Thus the even part of 

6 (N_ z pA_l(fl, Z;Xi, yj;q (5_ 1 Z~ZOA,_I(fl, Z;X/ ,y j ,  

is of the form 

f d2k(m {k, ) cos[ (a(m {g)) + 0 'k) ] ( 5.1 6) 

where {d~k}~~ are positive measures on appropriate function spaces, and 
0 (k) are phases. ( =  0 or =). This is to be compared with the even part of 

6~ ) Z~zpAA(.;xi ,yj; .  6(~ M) z pA, , ( . ;x{ ,y j , .  

which has the form 

f d2k'(m(k))cos[(~(m 'k)) + 0 ''k~] (5.17) 

and by inspection we see that 

d2k' = d2k and 0 '~k) = 0 for all k (5.18) 

Recalling properties (5.14) and (5.15) of CA.,, we thus conclude that the 
correlation inequality of Theorem 3.2 can be used here. A special case of it is 

<cos dp(r#k)))A,l(fl, Z) >~ <cos[~b(m (k}) + 0"<g)]>A,_ l(fi, Z) 
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with 0 "(k) = 0 (k) or 0 (k) "4- 7r,. Hence 

(COS 05(m(k)))&1(fl , Z) /> [(cos[05(m (k)) + 0(k)])A_ 1( fl, Z)[ (5.19) 

Since @)A,+l(fl, z) is even in 05, the proof now follows directly from 
(5.16)-(5.18). �9 

Remorks.  1. Using Theorem 4.1" and (4.24'), Section 4.2, the extension 
of Theorems 5.1 and 5.2 to systems of particles with spin is straightforward. 
Moreover, we can see generalizations to ITGFs;  see Section 4.3. 

2. For Fermi statistics, the upper bound on the RDMs given in 
Theorem 5.1 is poor and fairly uninteresting. Uniform upper bounds on 
RDMs (or ITGFs), smeared out with test functions, follow from the 
boundedness of fermion creation and annihilations operators (a consequence 
of the canonical anticommutation relations), as is well known. 

3. In the same sense as Theorem 5.1, Theorem 5.2, i.e., domination of 
Fermi RDMs by Bose RDMs, may be regarded as an uninteresting and 
physically obvious statement. We still feel that it is somewhat remarkable 
that it is true mathematically. 

T h e o r e m  5.3 (Lower bounds): 

s ) 
PA,I(fl, z; (X)N(X')M; (Y)N(Y')M) >1 X,,s 1 I ~Z Pa,,(fl, Z; X i, yj; q05) 

x fi(1 M) Z~zpA,,( f l ,  Z;Xi, yj; --qr v 

ProoL In view of (5.14), (5.15), (5.17), and (5.18) this is a direct con- 
sequence of the correlation inequality in Theorem 3.1. �9 

It should be noted that Theorem 5.3 can be proven more directly 
by using Jensen's inequality and a trivial inequality on permanents at 
the right places, rather than the C-functional integral and a correlation 
inequality. 

Next, we show that the rhs of the inequality in Theorem 5.3 diverges if 
z is large enough and A tends to N~, provided the potential V falls off 
sufficiently rapidly. We are indebted to M. Campanino for suggesting to us 
the main idea in the following argument. 

First, we consider the two-point RDM, PA, I(fl, 2"; X, y) [the case of a 
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general (2N, 2M)-po in t  R D M  being similar]. By Theo rem 5.3 we have 

pA, l(fl, Z;X,y)>~ ~zPA, I(fl, Z;X,y ; +_qc~ V 

j = l  

x exp - ( q 2 / 2 )  ~ & V(~o(~ + kfl), co(~ + lfl)) 
k,l=O 

(5.20) 

We propose  to show that,  for z large enough,  the rhs of  (5.20) 
diverges, as A S R~. Let e 1 be the unit  vector  in the direction o f y  - x (resp. the 
unit  vector  in the positive 1-direction if y = x). 

Let R be some positive number .  We define a sequence o f  points  

Ck t = X -If- �89 k -- 0, 1, 2 .... (5.21) 

Define ko b y t h e  p roper ty  that  

min  lY - (k'l = lY -- ~o1 
k 

Since 1~,+1 - ~k'[ = �89 

lY - ~,o1 ~ �88 (5.22) 

Given an integer j > 0, define kl  >/ko by the equat ion 

k o -  1 + 2 ( k l - k o +  1 ) = j -  1 o r j  
i.e., 

k~ = [ q  + ko - 1)/2] (5.23) 

where [a ]  is the largest integer ~<a. I f j  < ko, then kl  is not  defined. We 
now define a sequence o f  points  {~k}~2-~ as follows (Fig. 1): 

for k 1 = (j + ko - 1)/2: 

f o r k  l = ( j + k o ) / 2 -  1: 

r = ~k' for k ~< k 1 
(5.24) 

~k = ~P2k,-k for kl  < k ~<j - t 

~k = ~k' for k ~< k 1 
(5.25) 

( k  = ~J2k l - k+ l  for k 1 < k ~<j - 1 

Let  SR k be the ball o f  radius R centered at ~k. Let JA be such tha t  

S R  k ~ A for k --- 1 ..... j - 1, all j ~< JA (5.26) 
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e I 

. I 

Fig. 1 

Then, for  ko ~< j ~< JA 

PJflm,Ak[X, y'~ &o) = Z~fl(co)P~(x, y; dco) >~ ( ~=o Z P~(x,  y; &o) 

where X~s")(~) is the characteristic function of  

{r og(z) ~ S for nfl <~ z <~ (n + 1)fl} 
Next,  

dr V(~(v + kfl), co(z + lfi)) I]  ~") Zs~(O)) 
Ll=O,l~'lr n = O  

j - 1  

~< ~ max fllV(x,y)l 
l=O,l~k xeS~,yES~ 

We now assume that  

c(V)-= max ~, max 

(5.27) 

(5.28) 

IV(x, y)[ (5.29) 
k 1 = 1  xES'~,yES'~ 

is finite. Here S~  is the ball of  radius R centered at ~k', k = 0, 1, 2 ..... 
Condi t ion  (5.29) constrains the falloff of  the potential  V as ix - Yl ~ ~ .  
It is fulfilled, e.g., if V(x, y) = W(x - y), where W is a bounded,  cont inuous 
funct ion on It~ ~ with 

I W(x)l ~ const-{x[- 1 - c  for  some E > 0 (5.30) 

Under  these hypotheses on V the p roo f  o f  (5.29) follows immediately f rom 
(5.21). 

By (5.20) and (5.27)-(5.30) 

JA f~ j--1 
PA, I(fl, Z;X,Y) >~ • z~e-~q~ac(v) I~ Z~(c~ de~ (5.31) 

j=k o n = O  
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The integral on the rhs of (5.31) is easy to estimate from below: Define 

~ =  min fs  d~IfnP~,s~(~,~;do) ) (5.32) 
e gR/2 R/2 

where gR/2 is the sphere of radius R/2 centered at x + �88 moreover, 

= rain ~ P~m,s:;l(~, y; do)) (5.33) 
~ SR/2 dn 

where ~R/2 is the sphere centered at 1/2(r + r Since 
~a P~,s(~, rl; do)) is the kernel of exp[(~/2m)AS], where A s is the Laplacian 
with 0-Dirichlet data at c3S, 

ct > 0 and ~ > 0 for all R > 0 (5.34) 

From (5.31), the Markov property, (5.32), and (5.33) we deduce 

J^ 
PA, I(fi, Z; X, y) >~ -- ~ (z~e-q~P~(v)) j (5.35) 

O~ j=ko 

As A S ~ ,  Jh tends to + 0% and the rhs of  (5.35) approaches 

(zc~e-q~(v))k~ - zc~e q~(v)] (5.36) 

Clearly (5.36) and hence PA, t(fl, Z; X, y) diverge when 

z > rain (c~-leq':~(v)), for all x and y (5.37) 
R 

It is not hard to extend the above arguments to the (2N, 2M)-point 
RDMs: If (X)N = (X)M and (Y)u = (Y')M one can simply use the H61der 
inequality with respect to the expectation (--)A,~(fl, Z) to show that 
PA, l(/~, Z'~ (X)N(X)N" ~ (Y)N(YN)) diverges if Pa, l(fi, z; x ,y)  diverges. For 
general RDMs and 

z > rain (a-aeq~ac(v)) 0 ff(N+ M--1) for some 5 > 1 
R 

PA, I(fl, z; (x)N(x')~t; (Y)N, (Y')M) has a divergent lower bound. (The details 
of  this generalization, as well as estimates on 5, are rather straightforward and 
are left to the reader.) Finally we remark that spin can be included, as is 
obvious from Theorem 4.1". 

We summarize as follows: 

T h e o r e m  5.4. For  a charge-conjugation-invariant system of two 
species of bosons of charge q and spin S interacting via a (spin-independent) 
two-body potential V with the property that c(V) defined in (5.29) is finite, 
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the RDMs pA, i(fl, Z;(r)N(r')m;(r~N(r')M) diverge, for arbitrary points 
(X)u, (X')M, (Y)N, (Y')M, provided z is large enough (depending on fl, V,...). 

Remark. This result suggests that charge-conjugation-invariant, two- 
component Bose gases must have Bose-Einstein condensation when the 
density is large. Physically speaking, we expect oppositely charged particles 
to form neutral "molecules" at large density. But our results are clearly 
not even quite a beginning of a rigorous theory of Bose-Einstein condensa- 
tion. An interesting open problem in an attempt toward a rigorous theory of 
BE condensation is: Prove an upper bound (infrared bound) on 
PA, I(fl, Z; k, - k )  for small momenta k r 0, e.g., in terms of the ideal-Bose- 
gas two-point RDM. 

5.2. Existence of  the  T h e r m o d y n a m i c  Limit :  Bose Stat is t ics  

Let 

Gj(co) --- exp q2/2 dr V(co(r + kfl), co(r + kfl)) (5.38) 
k = O  

Recall that in the notation of (5.13), (5.14) 

CA ,(B, z; qr = d~x P~,^(x ,  x ;  d~o)Gj(co) 
' j = 1 7  

x cos q dr 4(e)(r + kfl), "c) 
k 

j = l  

i.e., dp~ d is given by ~ d'x  ia Gj(c~ x, x; do), with 

PJ' ix x; do)) )~{P(co)Pff(x, x; do) r e , A \  ~ 

By definition, X{'(co) is pointwise monotone increasing in A, i.e., if A' ~ A, 
then 

z~,,A(~o) ~ z~,~,(~o) - z~(~o) i> o 
so that 

, 1 1 dpA',Aj =-- dpA',j -- dpAd >~ 0 (5.40) 

Thus, for A' ~ A, 

CA,,,(fl, z; qc~) : CA,,(fl, z; q(p) + ~ [ dp~,Aj(r qb(l~ )) (5.41) 
j = l  . 

1 for some positive measures dpA,,a,j. 
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T h e o r e m  5.5 (Existence of the thermodynamic limit). Under the hy- 
potheses of Theorem 5.1 [i.e., for 0 < z < z c with zc >~ e x p ( -  flqZK/2)] and 

= 1, i.e., Bose statistics, 

is of the form 

lim PA,,(fl, Z; (X)N(X')M; (Y)N(Y')M) "= Pl(fl, Z; (X)u(X')M; (Y)N(Y')M) 
A /tN~ 

exists and has the same spatial symmetries as the Hamiltonian. In particular, 
if V is invariant under Euclidean motions, then so are the RDMs Pl,  for all 
N and M. 

Proof. By Theorem 5.1, it is enough to prove that 

p~,l(/~, z; (x)~(x')M; (Y)N(Y')M) 

is monotone increasing in A. Theorem 5.5 then follows by standard argu- 
ments; see Ref. 22 and I. 

As asserted in (5.17) and (5.18), 

�9 ! ,x l ,y j ;q  ) z PA, l ( ' ;x i ' ,Y j ;q  

~ f d2k,A(m {k)) COS (5.42) 4 ( m %  

and it is shown by the same arguments that we used to prove (5.40) that 
the measures d2k, A are monotone increasing in A. 

We now define 

<->(s;/~, z) = Z_(s;/~, z) 1 

( [ x exp Ca,(B, z; q4 )  + s . dpx , ,x j (~)  cos 4(/~ ~) 
j = l  , 

(5.43) 
where E(s; fl, z) is the obvious normalization factor. 

From (5.43) and Theorem 3.1(i) it follows that 

fd2a,A(m {k)) (cos ~b(m~k)))(s;/~, (5.44) Z )  

is monotone increasing in A. Furthermore, 

8 
<cos ~b(m(k))>(s; fl, z) 

j = l  
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and the rhs is nonnegative, by Theorem 3.1(ii). Integrating over s from 0 
to 1 then shows that (cos (a(m(k)))A,l( fl, Z) is monotone increasing in A. 
This property together with (5.44) yields monotonicity of the RDMs in A. �9 

Theorem 5.6 (Monotonicity in z and V). Under the same hypotheses 
and for arbitrary A ___ ~v: 

O) PA, I(fl, Z; (X)u(X')M; (Y)u(Y')M) is monotone increasing in z. 
(ii) If V is translation invariant with V(0)= K < ~ ,  and for Y = 

e-PqzK/2z, PA, I(fl, Z; (X)N(Xt)M; (Y)N(Y')M) decreases when V increases as a 
quadratic form. 

Proof. 1. This follows from Theorem 3.1(ii) by the arguments used in 
the proof of Theorem 5.5; see also I, Theorem QM, w 

2. The proof of this is identical to that of Corollary 3.2, (1), w of paper I, 
except for notational complications [the basic ingredients used are Theorem 
3.1(ii) and the fact that the covariance V of q~ increases if V increases in 
the quadratic form sense]. 

Generalizations. Theorems 5.5 and 5.6 also hold for bosons with 
spin. This is checked with the help of Theorem 4.1", Section 4.2. Moreover, 
one can apply the arguments used in this section to general ITGFs, with 
identical conclusions. To see this, one makes use of the machinery outlined in 
the last part of Section 4.3. By a general reconstruction theorem, the 
ITGFs in the thermodynamic limit uniquely determine a fl-KMS state and the 
dynamics of the infinite system in thermal equilibrium. 

5.3. E l e c t r o m a g n e t i c  Fields 

The coupling of a quantum mechanical particle with electric charge e 
to a classical or quantized electromagnetic vector potential A = (A1 .... , Av) 
is achieved by the usual minimal substitution 

~j ~- ~/~X j ~'~ ~j -- i eA j ,  A A ~ AA A = ~ (~j -- i e A j ) * ( ~ j  - ieAg) (5.45) 
j = l  

The kinetic energy operator T~A M'm defined in (2.2) is replaced by 

M N 

T(M,N) E (1/2ml)AAA- ~ (1/2m2)AjAA (5.46) A,A ~ - -  , , 
i = 1  j = l  

The total Hamiltonian is given by the previous expression, except that T~A u'N) 
is replaced by T~A~ u). From now on we impose the Coulomb (radiation) 
9auge on A, i.e., 

A 0 -- 0, (V.A)(x, t) = ~ ~iAi(x , t) = 0 (5.47) 
i = 1  
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Next, we recall the path space formula for exp{ -- //[ -- (1/2m)AaA + W]}, 
where W is a bounded one-particle potential. The integral kernel of this 
operator is given by the following modified Feynman-Kac formula: 

f P~,A(x,y;dco)exp[ie~=l fAj(CO(T),T)dco~(T) 1 

where ~ A~(co(z), z) doY(z) is defined as an Ito stochastic integral; the definition 
is unambiguous, thanks to the Coulomb gauge condition (5.47). See, e.g., 
Ref. 29. [A convenient way of deriving and interpreting (5~ is also provided 
by the lattice approximation: replace N~ by aZ v, establish (5.48) on the lattice 
a2~ v, and then pass to the limit a "a 0. This program is carried out, e.g., in 
Ref. 4.] 

If the external vector potential is classical and stationary, then 
A(CO(*), z) = A(co(z)) 

is an ~-valued function on fl which does not explicitly depend on z. If A is 
the quantized vector potential in the Coulomb gauge, then A(x, T) is inter- 
preted as the corresponding Euclidean field with periodic boundary condi- 
tions at ~ = 0, ft. It is a Gaussian, ~-valued, divergence-free random field 
with mean 0 and divergence D~(x-  x', ~ -  ~'), the transverse Euclidean 
(~  imaginary time) propagator of the free electromagnetic field, which is 
periodic in T - T' with period ft. As is well known, this corresponds to an 
inverse temperature fl equilibrium state of the free em field. The corre- 
sponding Gaussian measure ("the law of A") is denoted droP(A). 

In order to avoid all problems with ultraviolet renormalizations, an ultra- 
violet (high-frequency) cutoff in the spatial directions is imposed upon A, with 
the effect that 

f dma(A) Ai(x, z') = D~j(x - x', - z') (5.49) T,)Aj(X I, 

is regular at (0, 0). In this case all subsequent formulas of this section are free 
of Wick ordering (of powers of A) and of counterterms, without ultraviolet 
divergences arising. 

We now define the analog of the one-particle operator Aq, =- A~,qo 
introduced in (4.24), (4.25), Section 4.2: 

f o [ f l  ] Aq~,A(x, y) = P~,A(X, y; rico) exp q2/2 dz V(co(z), co(T)) 

Cfo ; 1 • ~xp iq dz ~b(co(z), z) + ~ ie Az(co(z), z) dcol(z) (5.50) 
L 1 = 1  
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We then set 

CA,,( fl, z; qqS; A) = -e{Tr  ln(1 - f.zAq4~,A) + Tr In(1 - ezA_q4,_ A)} 

fo = - -  z J d~x P~P (x x; dco)a/(og) 
j = 1 J m,A\ 

x cos q & r + kfl), "c) 
k 

- ~. d -~ fdph,i(r ) cos[~b(/~ )) + A(h~))] (5.51) 
j = l  d 

where Gj(~o) is the Wick ordering factor defined in (5.38), and the last 
expression is a short hand for the complicated third expression. 

Next, let 

EA,,(fl, z; A) = (exp CA,~(fl, z; qqS; A)) v (5.52) 

z ~  z PA,,(fi, z; x, y; qc~ ; A) = z{(l - ezAqr 1Aqr y) 

0 
= Z ~zz { - e  ln(1 -- ezAqr y) (5.53) 

[see (4.27), (4.28)]. The correlation functions in an external vector potential A 
are then given by 

p~,,(/~, z; (x)~ ..... ( y ' ) . ;  A) 

= EA,,(fl, z; A) I (6~N) (z  ~ PA,,(fl, Z; Xi, yfi qr A))  

x 6~M) Z~zP^"( f l ' z ;x{ ' y f ;q (~;A)  expCA"( f l ' z ;qr  (5.54) 
v 

and the correlation functions of the fully quantized system by 

(x),,..., (y')M; f) = =tot f P A,,(fl, --A,e(fl, 2") -1 dmP(A){exp[iA( f)J}EA,~(fl, z; A) Z; 

x PAA(fl, Z; (X)N ..... (Y')M; A) (5.55) 
with 

"~tot --A,,(fl, Z) = dmP(A)~A.,(fl, z; A) (5.56) 
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We now discuss the following three problems: 
(I) Diamagnetic inequality for partition function. (29) 

(II) Diamagnetic inequality for RDMs.  
(III) Existence of the thermodynamic limit of  the RDMs of non- 

relativistic quantum electrodynamics. 

(I) We begin by recalling Simon's diamagnetic inequality, (19) i.e., 

EA, I(#,  Z; A) < ~A,l(fl, Z; 0) = EA, I(fl, Z) (5.57) 

It must be emphasized that (5.57) holds for general Bose systems, without the 
assumption of charge-conjugation invariance. In the formalism adopted in 
the present paper the proof of (5.57) proceeds as follows: notice that 
A+_q4,,+_A(X, y) defined in (5.50) is of positive type as a function of q~ and A. 
Thus - Tr ln(1 - zA +q~, +A) and consequently exp[ - Tr ln(1 - zA +q~,_+A)] 
are of positive type in ~b and A. Since <-)v  is Gaussian, 

EA, I( fl, z; A) is of positive type in A (5.58) 

(See Ref. 4, Section 5, for details concerning related arguments.) We empha- 
size that (5.58) really holds for general Bose systems of  arbitrarily many 
species of bosons of  arbitrary spin, as long as the spin of the particles is not 
coupled to the electromagnetic field. Clearly (5.58) implies Simon's inequality 
(5.57). 

Since dma(A) is Gaussian O.e., of positive type), 

lama(A) EA, x(fl, z A + Ar --tot=a,l(fl, Z; Ad) = 

is of positive type in the classical, external field, Ar so that 

. ~tot =tot =tot rR z O) = •a,l(fl, Z) (5.59) --A,i(fl ,  Z; A~I) ~< - ^ , 1 ~ v ,  , 

This says that if the interactions of the spin of bosons with the electromagnetic 
field is neglected, then systems of arbitrarily many species of bosons of arbitrary 
spin react diamagnetically to an external electromagnetic field Aci. 

(II) Next, we prove a related result for the RDMs  ofcharge-conjugation- 
invariant Bose systems. 

T h e o r e m  5.7 (Diamagnetism in RDMs).  Assume charge-conjugation 
invariance. Then 

(i) 

(ii) 

IpA,,(#, z; (x)N,..., (y')M; A)I ~ pA,,(#, z;  (x)N,...,  (Y')M) 

IP A,- I(fl, z; (X)N ..... (Y')M; f)] ~< PA, I ([3, Z; (X)N,..., (y'); f) 

ProoL O) In view of (5.51), (5.50), and (5.53), result (i) reveals itself as a 
special case of Theorem 3.2. [The role of  the phases ~, {f}  in Theorem 3.2 is 



Classical and Quantum Continuous Systems. II 743 

played by 

ie f + kfl), z) dc#(z + kfi), k = 0 ,  1,2,...] 
l=1  

See also (5.17) and (5.18). 
(ii) This is a straightforward generalization of Theorem 5.2 with a very 

similar proof, which we permit ourselves to leave to the reader. [] 

We remark that Theorem 5.7(i) can be generalized in the same way as 
(5.57) is generalized to (5.59), and again spin can be included if not coupled 
to A. Next, suppose the electromagnetic field is quantized. Since EA,~(fl, z; A) 
is of positive type in A, it has the general form ~ dpA(h) exp[iA(h)] for some 
dpA >>- O. By Theorem 3.1(ii) we therefore have 

~to~ lt~ z ~- 1 .Idm~(A) [cos (cos A(f))A,l(fl, z) - --A,X~V, , A ( f ) ] E A ,  I ( f l ,  z ;  A) 

>~ f dmP(A) cos A(f) 

and since 

then 

x 2 = 2 lim e-2(1 - -  COS e X )  
e ~0 

(, 
([A(f)lZ)A,l(fl, z) ~< Jdma(A) [A(f)l z = (f, Daf) (5.60) 

This is a trace of the famous Higgs mechanism (in solid state physics dis- 
covered by Anderson. For related results see Ref. 4). 

(III) As a generalization of Theorem 5.5, Section 5.2, we have the 
following result: 

Theorem 5.8 (Existence of the thermodynamic limit in nonrelativistic 
QED). For charge-conjugation-invariant systems, 

PA, I(fl, Z; (X)N(X')~; (Y)N(Y')M; f) 

defined in (5.55) is monotone increasing in A and z and decreasing when D a 
increases, in the quadratic form sense. In particular, the limiting RDMs 

Pl(fl, z;...) = lim Pa, x(fl, z;...) 
A f W  

exist if z < exp(-flq2K/2). 
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ProoL By (5.55), uniform upper bounds on pn, l(/~, z; (x)N ..... (Y')M; f) 
follow directly from Theorem 5.7(i). Theorem 5.1, and the trivial inequality 

I{exp[iA(f)]}EA, l( fl, z; A)I ~ --=A,l(fi, Z; A) 

The proofs of monotonicity in A, z, and D p are the same as those of Theorems 
5.5 and 5.6 if one uses, instead of Theorem 3.1(ii), Theorem 3.3. �9 

More details concerning a related result may be found in Ref. 4. 

6. S O M E  OPEN PROBLEMS A N D  OUTLOOK 
The following five topics may be worth being studied within the func- 

tional integral formalism developed in this paper. 
1. Behavior at small values of z and /~, decay of correlations in the 

thermodynamic limit, cluster expansion, ~3'z2) screening properties. ~2) 
2. Analysis of phase diagram based on studying the behavior of the 

"act ion"  SA,,(m, z; (9) [resp. CA,,(//, z; qqS); see Section 4.2] as a functional 
of q~. Reliability of the naive Goldstone picture with ~b as order parameter. 

3. Further study of Bose-Einstein condensation (e.g., for charge- 
conjugation invariant systems), in continuation of the results given in 
Theorems 5.3 and 5.4. 

4. Continuation of analysis of nonrelativistic (quantum) electrodynam- 
ics and superconductivity for nonrelativistic bosons. 

5. Existence of the classical limit (h "-, 0) of RDMs and other correlation 
functions. 

We conclude with a few comments on some of these circles of problems. 
1. The functional integral formalism developed in this paper would in 

principle enable one to apply the Glimm-Jaffe-Spencer cluster expansion ~26) 
to the quantum mechanical gases considered in this paper, provided/? and z 
are suitably small, and the potential V is of rapid decrease. 

This may improve the results of Ginibre ~12) and simplify the techniques 
of Brydges and Federbush, ~3) but one cannot expect that the results of Brydges 
and Federbush ~3) can be improved in this way. (We notice that the applica- 
bility of the cluster expansion does not require charge-conjugation 
invariance.) 

More interesting is the question of whether quantum mechanical gases of 
particles interacting via regularized Coulomb potentials will have Debye 
screening ~2) for tiny values of 3. In principle, a combination of the methods 
developed in this paper and in Ref. 2 ought to yield insight into this 
problem. 

2. One can imagine that one may extend the Glimm-Jaffe-Spencer 
version of the Peierls argument ~22) and their mean-field contour expansion ~27) 
to the systems considered in this paper, by viewing the auxiliary random field 
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q5 as an order parameter (the analog of the Ising spin in the conventional 
Peierls argument). Related to this is the discussion of the properties of 

1 
S(qS) - lim SA(~b ) (6.1) 

I~rSa,,(m, z; O) + �89 VA-1~ b) (6.2) 

SA(qS) = [--Ca,,(fl, z; q~b) + �89 V~-lqS) (6.3) 

for fields ~b which are constant on [~ x [0, fl]. (The functionals SA,, and Ca,, 
are defined in Section 4.2.) This supplies an analog of the Goldstone picture. 
For SA as in (6.3) and a translation-invariant potential V we obtain 

_(2~mX]V/2 ~_~ 6 j-1 
S(~b)= \ fl j j=tjl+~/2 

x zexp V(0) cos(j/?q~b) + ~- ~/(0)- 1 ~b 2 (6.4) 

Heuristically, one expects that if S(0) is the unique global minimum of S(~b), 
the infinite-volume equilibrium state is unique. If  there are degenerate abso- 
lute minima for some values of z and/~(e = - 1), then the equilibrium state 
is presumably not extremal (i.e., degenerate). This situation is met in a system 
of fermions on a lattice ( ~  ~ 2 ~) with attractive interactions, resp. in the 
quantum mechanical Widom-Rowlinson model on the lattice, with Fermi 
statistics. The combination of a lattice with Fermi statistics renders such sys- 
tems stable. The functional integral formalism for lattice systems with attrac- 
tive potentials is obtained from the one developed in Section 4 by using 
Brownian motion on the lattice and replacing 

exp[iqSd~:O(co(+kfl),~) ] 

by 

For e = - 1  and strictly positive lattice spacing the resulting expressions 
make sense. The formalism may be useful to develop a microscopic theory of 
Cooper pair formation for lattice electrons. 

3. Nonrelativistic quantum electrodynamics is a subject that has been 
undeservedly neglected. Most problems one may wish to pose are still open. 

(a) Do atoms coupled to the (ultraviolet regularized) quantized radia- 
tion field have discrete ground states? What is the correct mathematical 
description of the resonances corresponding to the excited, atomic states? 
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(b) Do nonrelativistic, interacting Bose gases exhibit the Meissner effect 
typical of a superconducting state, at suitable density and temperature? Do 
such systems exhibit the formation of vortices ? Do nonrelativistic, interacting 
Bose gases coupled to the quantized radiation field exhibit the Higgs 
mechanism in a strict sense of the word? 

4. For bounded regions A the existence of the classical limit can be 
proven for the RDMs of the system analyzed in Sections 4 and 5.1. If one sets 
zh = z(2n~6h) v/2 and if one replaces A by haA, the RDMs converge to the corre- 
sponding classical correlation functions studied in paper I. If one uses the 
functional integral formalism of Section 4 and appropriate L v estimates the 
proof is particularly straightforward. The exchange of A 7 IR ~ and h ~ 0 is, 
however, nontrivial (one could use a cluster expansion). 

APPENDIX  A. PROOF OF T H E O R E M  2.1 

Let 

Ut((X)M, (X')u) = ~ qtZVz(xi, xj) + ~ qzZV~(xl ', x f )  
1 <~i<j<~M 1 <<.i<j<<.N 

M N 

+ ~ ~ qlq2Vl(xi, xj) (A.1) 
i = l  j = l  

f o r / =  1,2. 
Recall that V = V1 + V2, where V2(x, y) =- V2(x - y) is a function with 

nonnegative, continuous Fourier transform 192, and 

17"2(0) > 0 (A.2) 
Without loss of generality we may assume that 

q2 > 0 (A.3) 

Finally we recall that the statistics of the first species of particles is Fermi 
statistics, i.e., 

ex = - 1 (A.4) 

b u t  ~:2 ~- -~- 1. 

By inequality (2.1) and hypothesis (2.3) 

H~M,m >. ~M,U) __ B(M + N) with I ~  M'N) =- �89 M'u~ + U2((X)M, (X')N) 

(A.5) 

Since l~2(k ) >~ 0, there exists a finite constant ~ [--max(q12, q2 z)" V(0)] such 
that 

U2((x)M, (x')N) >/ - / ~ M  + N) (A.6) 
(see Ref. 22). For the proof of Theorem 2.1 we need the following result: 
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L e m m a  A.1 Suppose that  q2N >>- 2[q~[M, and x i ~ A,xi' ~ A, for j = 
1 .... , M a n d i = l  .... ,N .  Then 

U2((x)M, (X')N) >! clNZ/IA[ -- ezU 

for  some finite constants  c a > 0 and c 2. 

Proof. We use some arguments  due to Ruelle3 TM Let 

M N 

rtl(x) = Z ql •(X -- xj), nz(x) = ~ q2 6(x -- xi' ) 
j = l  i = 1  

with xj e A, x~' e A for j = 1,..., M and i = 1 ..... N. Let 

nl(P) = (2~) -~/2 f n , ( x ) e x p ( - i p  .x)d~x) = (2=)-~/2 ~ q, exp(ip'xk) 
jA k 

Clearly 

~4((xh, ,  ( x % )  = [ d~x [ d~y[nx(x) + ,,2(x)] V~(x - Y)[nx(y) + "2(Y)] 
o a  J A  

_ q 2  V(0)a~r - -  q 2  2 V(O)N 

=  dVp V 2 ( p ) l , h ( p )  + ,h (p ) [  - V ( 0 ) M  - V(O)N 

(A.7) 

Next  

Itla(P) + nz(P)l 2 = (2~t) -~/2 .I^ d~x e-lpx 

x fa d~y [n l (x  + y) + n2(x + y)][ndy) + n2(y)] 

By power  series expansion of  e ~p* and the hypothesis  that A be regular, 
i.e., 

max[x[ ~< ~]A] */v for some finite 
xEA 

provided A ~ 0 (which can be assumed due to the translat ion o f  Vz), we have 

[~I(P) + hz(P)[ z >>- max(0, G(p)) 

with 

G(p) = (27z) -~/2 d*x [n l (x  ) 4- nz(x)] 

- (2~) -~/e d~x fln~(x)l + In2(x)l] [exp(~[p[[AI ~/~) - 1] (A.8) 
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Since by hypothesis q2 N >~ 2]ql]M, 

f d~x + = + >~ �89 N [nl(x) r / 2 ( x ) ]  qlM qzN 

f []nl(x)l + Inz(x)l] = [ql[M + q2 N <<. ~q2 N 

Let 
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f ( p )  -- max(0, 1 -- 9[e ~lpl -- 1]) 

Clearly f(p) is a nonnegative, continuous function with 

s u p p f =  {p: IPl ~< a 11n(10/9)} 

compact. 
By (A.8) and (A.9) 

I~l(p) + r~e(p)[ 2 >~ (2r 0 v/2�88 max(0, 1 - 9[exp(~lp[IA] I/~) - I]) 

= (2zO-~/Z1(q2N)2f(IAI1/~p) 

Thus, using (A.7) and the inequality 

q12V(O)M + qzZV(O)N <~ q22V(0)(1 + Iqll/2qz)N 

which holds, since [ql[M < (q2/2)N by hypothesis, we obtain 

U2((x)M, (x')u) >1 (2=)-~/2 4 (q2N) d~p pz(p)f(iAll/~p) _ cz N 

= (2z0-~/2 qz 2 N 2 f IA] d~k ~'2(IAL-1/~k)f(k)-c2X 

N 2 

>~ cl ~[ - c2 N 

w i t h  c 2 = q22V(0)(1 + ]qll/2qz ) and 

c 1 = (2~) v/Z(qzZ/4 ) min V(kIAI-1/v) | d~k f (k)  
Ikl ~< c~ i In(10/9) J 

which is strictly positive if IA] is sufficiently large, because 

lira P(khAI-1/~) = V(0) > 0 for Ik] < oo 
tAI ~ oa 

and 5dVkf(k) > 0 by (A.10). �9 

(A.9) 

(A.~0) 

(A.11) 
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We are now in a position to prove Theorem 2.1. By (A.5) and the 
definition of EA( fl, z I , z2) [see (1.6)] 

EA(3, zl,  z2) ~< ~ ~ s (A.12) 
M = 0  N = O  

where 2 l = zl exp(flB), l = 1, 2. 

Next, 

�9 = ~ -+ ~ with P?-= [2[qxlM/q2] (A.13) 
N = 0  N = 0  N=)V+ 1 

where [a] is the largest integer ~<a. 
By (A.6), 

p7 

Z y N Tr.~xM.x,{exp( --/~/~(AM'm)} 
N = 0  

<~dlMTr.~M.o~{exp(--~T(AM'~ N~r (0~f /" fl 

<. {dt(2d2)2rq"/q~}MTr~e(A~,o~{exp(-~ TA(~t'~ exp(d3lA[) (A.14) 

where d 1 = exp(/~/~) and d2 = max(�89 z2 exp(/?/~)), and we have used the 
inequalities 

N = 0  ]~ 

~< (2d2) ~ ~ (�89 exp --~- 
N = 0  

<~ (2dz) zjq~lM/q2 exp(da[AI) 

for s o m e d  3 < o% for b o t h e  2 = - 1  a n d e  2 =  +1. 
Next we apply Lemma A. 1 to obtain 

N = P T +  1 

Tr~ekM.o,{exp(- �89 

X --{{N:qzN~ZIqllM Z2 N exp(c2N ) exp( -- clN2/]A[) 

x Tr~,~,{exp(-�89176 
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Now, choose 7/> 1 to be so large that 

i2e~e -~' < 1/2 

In that case, 

(A. 15) 

iz  N exp(czN) exp ( -  c~N2/[AI) Tr~,~,{exp( --�89 
q2N>~ 2lqllM 

[~lh[] 

2 Z2N e x p ( c 2  N )  Trze~'u){exp( --�89 
N=0 

+ ~ (�89 Tr~e~.u){exp ( _ �89 T~,m) } 
N = [TIA]] + 1 

= ([~11 {2/z exp(c2)}N + 1) ~ (�89 Tr~e~,N,{exp(_�89 
\ N = 0  N=0 

~< 2(d4 - 1)- ideal exp(d3lA[) (A.16) 

with d4 = max(2, 2Z2eC~), and we have used (A. 15), the Schwarz inequality for 
series, the inequality (2 a,,2) 1/2 <~ y~ a,,, with a, ~> 0, in that order. 

By (A. 12), (A. 14), and (A. 16) 

EA(fl, Zl, Z2) ~< 4(d4 - 1)- ideal exp(d3[AD 

x ~ s189176 
M=0 

where s = max(~l, s 
Finally, since all vectors in .~fA (M'~ have Fermi statistics, 

iM Tr~eku,~189176 <~ exp(dsiAI) 
M=O 

for some constant d 5 which is finite when s < oe. This completes the proof of 
Theorem 2.1. �9 

APPENDIX  B. PROOF OF T H E O R E M  2.2 

In Theorem 2.2, ql > 0, q2 < 0 ,  E 1 = E 2 = 1 (i.e., both species have Bose 
statistics), z 1 > 0, z2 > 0. One sets 

m = min{rn 1, m 2 }  (B.1) 

z = �89 min{z a, z2} min{1 - qt/q2, 1 - qz/ql} 
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[see (2.5)]. Let 

By (B.1), 

We define 

~ 1 1 

i = 1 j=  1 2m AjA 

~(A~,,~> = tkM+~) + U((x). ,  (x%) 

(B.2) 

(B.3) 

with 

where 

/4~({p}) = ~<,'~> + U((x)~, {p}) 

U((x)I<, {p}) = ~ pipjV(x~, xfl 
l <~i <j<~K 

Without loss of generality we may assume ql /> Iq21. From (B.8) and (B.9) we 

(B. 10) 

#(if+N) = L2(A, dVx)| @ C (B.5) 

The second factor stands for the spin wave function that is an eigenvector of 
the 1-component of the total spin operator with maximal eigenvalue, for 
example. Obviously 

#(A M+N) = ~,uF~"N> (B.6) 

with jF~M,N) given by (1.4), (1.4'). By (B.4) and (B.6), 

Tr~M,N~[exp( -- fill(if'm)] ~> Try<if+ u>[exp( - fl~r(AM'm)] (B. 7) 

Let Z = rain{z1, z2}. By definition of EA(fi, zl,  z2) and (B.7), 

EA(/~, Z1 ' Z2 ) ~ ~ 2M+X Tr>~+u)[exp(-- fill(AM'N))] 
M,N=O 

K 
= ~ 2K ~, Tr~x>[exp(__fl['t(AK-N,N))] (B.8) 

K=0 N=0 

x-o .=o \N/Tr#~A')[exp(- BH~ )3 

= ~ (2/2)xf(~ [6(pj-ql)+ 3(pj-q2)] dpj 
K=0 j = l  

x Tr~>{exp [ - fl/4AK({p})] } (B.9) 

HkM,~> < /~<,M,N> (B.4) 
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now obtain 

EA(fl' ZI '  Z2) f K=0 ~ zKfi=I [5I d2(pz)Tr~kK){exp[-fl/l~({p})]} (B.11) 

where z = �89 + Iq2l/ql), and 

d2(p) = (1 + [q2l/ql)-l[lqzl/q~ 6(p - ql) + 6(p - q2)] dp (B.12) 

In (B. 11) we have used that 

(1 + [q2l/qx) dA(p) ~< [6(p - ql) -t- c~(p - -  q2)] dp 
We now express 

Tr#(~,{exp[ - fl/~ (AK)({ p })] } 

in terms of a Feynman-Kac integral (see Section 4.1). Then we apply the 
Jensen-Symanzik inequality with respect to the Wiener measure. Subse- 
quently one may "undo"  the Feynman-Kac integrals. This yields 

Tr~(Ax){exp [ --/3~(ar)({p })] } 

/> Tr,~(Ax@Xp[--/~iP(AK)]} exp[--/~(U((')/~, {P}))o] (B.13) 

with 
--(K) 1 ( - )o  = {Tr#k~'[exp(--flTA )]} Tr#kK'[exp(-flT(a~))-] 

Next, we apply Jensen's inequality with respect to ~ H~=I d2(Pi)-, using the 
fact that J d2(p) = 1. This yields 

EA(fl, 21, ZZ) >~ ~ zKTr#(/)[exp(--/3iP(AK))] 
K=0 

{ [  fOl ]} x exp -/~ d2(pi) (U((')x, {P}))o 
i 

Finally, 

f ~=(-I d2(p3 (U((')x, {P}))o = �89 f d2(p) p f d2(p') p'(V(,))o 

= 0 by definition (B. 12) of d2 

This completes the proof of Theorem 2.2. �9 
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